Lotele

Monitoring and controlling for your safety

Tele Haase was founded in 1963 and is Austria's market leader in developing state-of-the-art monitoring, control and automation technology. We are known for operational excellence in the development and production of control and monitoring components for automation applications in industry and building automation.

TELE PRODUCTS are installed globally in various control cabinets or control installations. Thanks to the simple integration into new or existing systems, the reliable function and monitoring of electrical values has proven itself even in critical energy and facility management applications.

TELE DEVELOPMENTS meet international quality standards, contribute to the environmental
friendly generation of renewable energies using water, wind and sun and have long been what is known as green or clean.

AT TELE HAASE, we see ourselves as a "company of the future" with the aim of actively shaping social change towards sustainability in the long term. We develop technologies that help industries to become safer, more efficient and sustainable.

All over the world
We are the Austrian market leader for timing and monitoring relays. Our relays might be small but they master a huge variety of applications.

TELE at a glance

\checkmark Monitoring devices for physical values such as current, voltage, temperature, frequency, level, power factor, active power ...
\checkmark Provider of high-quality industrial switching relays and power electronics
\checkmark Grid and system protection for renewable energies
\checkmark Extensive technical expertise thanks to nearly 60 years of experience
\checkmark Global sales network
\checkmark Electronic manufacturing services at crisis-proof location in Vienna, Austria

Made in Austria

Over 80 highly qualified employees meet the high demands and wishes of our customers every day. TELE Haase produces one hundred percent of its products in Austria. Our core areas of expertise are development and production - including EMS at our head office in Vienna. The TELE sales team and more than 60 international trade partners make up our global sales network and stand by for your support.

Who we are

We have nearly 60 years of experience in the development and production of control and monitoring components and we are happy to share this know-how with our customers.

At the Vienna location

we are committed to the highest quality, sustainability and outstanding customer service, both in the production of our own products and in EMS production. In the professional implementation of innovative ideas from customers we score with flexibility and reliability.

How do you benefit from this?

- Short development and realization times
- Proven modular components
- Ability to integrate into the customer's system
- Scalable in price and performance
- In-house development and production with optimized batch sizes

Our business areas

> With solid engineering know-how, TELE develops and produces smart technology for a better world. We try out ideas and break new ground on our way to "the company of the future".

Automation components

According to our customers' needs, we develop and produce technical solutions for a wide variety of controlling and monitoring tasks, such as timing and monitoring relays, grid and system protection, power electronics and industrial IoT. TELE products are being used all over the world in control cabinets, plant and machinery, renewable energy sector or facility management.

EMS

At TELE Haase you will find our conveniently located Electronic Manufacturing Services (EMS), which can flexibly adapt to your requirements with a personal touch and Austrian quality. We support you in ideation, electronic development, prototyping to serial production and delivery.

Factory Hub Vienna

With the Factory Hub we offer space for new ideas and concepts of young founders and support startups with our extensive production know-how in the implementation of prototypes and small series.

Organisation Playground

TELE implemented a new organization structure in 2012 and invites people to join our experiences. Based on the idea of "New Work" we operate without traditional hierarchies and make democratic decisions. This promotes individual responsibility andagility, and puts us in a position to offer operational excellence at all levels in the future.

Product categories

Our product range consists of the following high quality products:

Timing relays

can make system and machine operation even more efficient. They check the time for you. For example, they switch off wind turbines after a preset time or fertilize grapevines for a defined timespan. Your production is never thrown off its rhythm, which saves money.

Monitoring relays

measure and monitor current, voltage, temperature, frequency, level, power factor and active power. A variety of different enclosures for control technology, industrial systems, machinery and building installations allow for flexible use of relays. The rugged design offers excellent usability and installability.

Power monitors

[page 36]
measure variables such as the power factor of a motor or the true power of a pump or fan. These measurements provide indications and important information about the state and functioning of machinery and installations, which reduces maintenance costs, service works and downtime.

Grid and system protection

[page 44]
devices monitor the feed-in of energy to the $230 / 400 \mathrm{~V}$ grid. In case of a power failure or disruption by the energy supplier it is vital for small power plants to be disconnected within a few milliseconds to avoid any danger to people and equipment.

Complementary products

- Coupling units and signal converter
- Switching relays and sockets
- Current transformers
- Softstarter, Thyristor control units and braking units
- Hour meters and timers
- Switching power supplies

Product series

Our large and small quartet:
 ENYA, VEO, GAMMA and KAPPA - play it safe!

	ENYA	VEO	GAMMA	KAPPA
PRODUCT CATEGORY	TIMING \& MONITORING RELAYS, COUPLING UNITS	TIMING \& MONITORING RELAYS	TIMING \& MONITORING RELAYS, POWER MONITORS	TIMING \& MONITORING RELAYS
Dimensions ($\mathrm{W} \times \mathrm{H} \times \mathrm{D}$)	$17.5 / 35 \times 87 \times 65 \mathrm{~mm}$	$22.5 / 45 \times 67 \times 76 \mathrm{~mm}$	$22.5 / 45 \times 90 \times 108 \mathrm{~mm}$	$38 \times 51 \times 80 \mathrm{~mm}$
Design	installation design	compact industrial design	industrial design	installation design
Labelling area	-	freely positionable or fixed	fixed	-
Product standards	$\begin{gathered} \text { EN 61812-1 } \\ \text { EN } 60947 \end{gathered}$	$\begin{gathered} \text { EN 61812-1 } \\ \text { EN } 60947 \end{gathered}$	EN 61812-1 EN 50178 EN 60947	$\begin{gathered} \text { EN 61812-1 } \\ \text { EN } 50178 \end{gathered}$
Energy consumption	0.8-1.3W	extra low: 0.35-0.6W	1-1.5W	0.8-2W
Electrical connection	screw terminal	push-in terminal or screw terminal	screw terminal	plug-in housing mounted on screw terminal socket
Overvoltage category / Rated impulse withstanding voltage	III / 4kV	III / 4/6kV (protective separation)	III / 4/6kV	III / 4kV
Application field	building	industrial automation	industrial automation	building
Base accuracy	$\leq 5 \%$	$\leq 2.5 \%$	$\leq 3 \%$	$\leq 5 \%$

Product features

Each of our products is

 characterized by special features:
\checkmark Installation design (45 mm standard front dimension)
, Timing and monitoring relays, single and multifunction
, Width 17.5 mm and 35 mm , 1 or 2 changeover contacts (CO)
\checkmark UL listed, CE conformity marking
, Temperature range -25 to $+55^{\circ} \mathrm{C}$

- Recessed potentiometer buttons, analog indication by means of LED
, 12 to 240 V AC/DC, powered by measuring circuit
\checkmark Compact industrial design

\checkmark Timing and monitoring relays, single and multifunction
, Width 22.5 mm and 45 mm , 1 or 2 changeover contacts (CO)
- Low profile
\checkmark UL listed, CE conformity marking
\checkmark Temperature range -25 to $+60^{\circ} \mathrm{C}$
- Recessed potentiometer buttons, analog indication by means of LED
- 12 to 240 V AC/DC, powered by measuring circuit

GAMMA

\checkmark Industrial design
\checkmark Timing and monitoring relays, single and multifunction
, Width 22.5 mm and 45 mm , 1 or 2 changeover contacts (CO)
\checkmark UL listed, CE conformity marking
\checkmark Temperature range -25 to $+55^{\circ} \mathrm{C}$
, Recessed potentiometer buttons, analog indication by means of LED, digital indication by means of LCDDisplay
v 12 to 240 V AC/DC, powermodules 12 to 500 V AC; 24V DC

KAPPA

\checkmark Industrial design
(45 mm standard front dimension)

- Timing and monitoring relays, single and multifunction
- Width 35 mm , 2 changeover contacts (2CO) or 1 changeover and 1 normally open contact ($1 \mathrm{CO}+1 \mathrm{NO}$)
\checkmark CE conformity marking
- Temperature range -25 to $+55^{\circ} \mathrm{C}$
\checkmark Recessed potentiometer buttons, analog indication by means of LED

12 to 240 V AC/DC, powered by measuring circuit

The supply voltage U must be constantly applied to the device. When the control contact S is closed, the set interval t 1 begins. After the interval t 1 has expired, the output relay R switches into on-position and the set interval t2 begins. After the interval t2 has expired, the output relay switches into offposition. During the interval, the control contact can be operated any number of times. A further cycle can only be started when the cycle run has been completed.

Wa SINGLE SHOT TRAILING EDGE WITH CONTROL INPUT

The supply voltage U must be constantly applied to the device. Closing the control contact S has no influence on the condition of the output R. When the control contact is opened, the output relay switches into on-position and the set interval t begins. After the set interval has expired, the ouput relay switches into offposition. During the interval, the control contact can be operated any number of times. A further cycle can only be started when the cycle run has been completed.

nWa MAINTAINED SINGLE SHOT TRAILING EDGE

When the supply voltage U is supplied, the output relay R remains into off-position. As soon as the supply voltage is interrupted the output relay switches into on-position and the set interval t begins. After the set interval t has expired the output relay switches into off-position. When the supply voltage is reconnected before the interval thas expired, the unit continues to perform the actual single shot.
nWuWa MAINTAINED SINGLE SHOT LEADING AND TRAILING EDGE

When the supply voltage U is applied, the output relay R switches into on-position and the set interval t begins. After the interval thas expired the output relay switches into off-position. As soon as the supply voltage is interrupted the output relay switches into on-position again and the set interval t begins. After the set interval t has expired the output relay switches into off-position. If the supply voltage is interrupted (nWu) or reconnected (nWa) before the interval t has expired the unit continues to perform the actual single shot

WsWa SINGLE SHOT LEADING AND SINGLE SHOT TRAILING EDGE WITH CONTROL CONTACT

Bi FLASHER PULSE FIRST

The supply voltage U must be constantly applied to the device. When the control contact S is closed, the output relay R switches into on-position and the set interval t 1 begins. After the interval t 1 has expired, the output relay R switches into off-position. If the control contact is opened, the output relay again switches into on-position and the set interval t2 begins. After the interval t2 has expired the output relay switches into offposition. During the interval, the control contact can be operated any number of times.
解 begins. After the interval t has expired, the output relay R switches into off-position and the set interval t begins again. The output relay is triggered at a ratio of 1:1 until the supply voltage is interrupted.

Bp FLASHER PAUSE FIRST

When the supply voltage U is applied, the set interval t begins. After the interval t has expired, the output relay R switches into on-position and the set interval t begins again. After the interval t has expired, the output relay switches into off-position. The output relay is triggered at a ratio of 1:1 until the supply voltage is interrupted.

Wt PULSE DETECTION

When the supply voltage U is applied, the set interval $t 1$ begins and the output relay R switches into onposition. After the interval t 1 has expired, the set interval t 2 begins. So that the output relay R remains in on-position, the control contact S must be closed and opened again within the set interval t 2 . If this does not happen, the output relay R switches into off-position and all further pulses at the control contact are ignored. To restart the function the supply voltage must be interrupted and reapplied.

When the supply voltage U is applied the green LED U / t illuminated. When the control contact S is closed (rising edge) the output relay R switches into on- position (yellow LED illuminated) and the set interval t begins (green LED U/t flashes). So that the output relay R remains in on-position, the control contact S must be opened and closed again within the set interval t. if this does not happen, the output relay R switches into off-position. If a new positive edge on the control input is detected, the interval t begins (green LED U/t flashes) and the outputs relay R switches into on-position (yellow Led illuminated).

Wto PULSE SEQUENCE MONITORING EDGE TRIGGERED WITH ON STATE

Ii ASYMMETRIC FLASHER PULSE FIRST

When the supply voltage U is applied, the output relay R switches into on-position and the set interval t 1 begins. After the interval t 1 has expired, the output relay switches into off-position and the set interval t2 begins. After the interval t2 has expired, the output relay switches into on-position. The output relay is triggered at the ratio of $\mathrm{t} 1: \mathrm{t} 2$ until the supply voltage is interrupted.

Ip ASYMMETRIC FLASHER PAUSE FIRST

When the supply voltage U is applied, the set interval t 1 begins. After the interval t 1 has expired, the output relay R switches into on-position and the set interval t 2 begins. After the interval t2 has expired, the output relay switches into off-position. The output relay is triggered at the ratio of $\mathrm{t} 1: \mathrm{t} 2$ until the supply voltage is interrupted.

TW FUNCTION AUTOMATIC TIMER WITH (TW) OR WITHOUT (T) SWITCH-OFF WARNING

After the pushbutton (control input) has been pressed, the output relay R closes and the set interval t begins. If the pushbutton is pressed again before the interval has expired, the interval begins again (restart function complies with EN 60669-2-3). Rapid, multiple pressing of the pushbutton (pumping) adds 2, 3 or more time intervals to extend the time up to 60 min . Prolonged pressure on the button ($>2 \mathrm{~s}$) aborts the interval running and switches the relay off (energy saving function). In the TW mode the device provides a switch-off warning (in accordance with DIN 180-158-2) by generating short pulses (flashing) at $30 \mathrm{~s}, 15 \mathrm{~s}$ and 5 s prior to switch-off.

P IMPULSE SWITCH MODE

$\mathbf{P}(\mathbf{R})$ IMPULSE SWITCH MODE WITH OFF DELAY

In this mode, every keypress toggles the output relay R (flip-flop). After the pushbutton (control input) has been pressed, the output relay closes and the set interval t begins. After the interval has expired the output relay switches into off-position. If the pushbutton is pressed again before the interval has expired, the interval will be canceled and the output relay switches into off-position.

LA LOAD ALTERNATOR - PUMP CHANGER

In this mode, every falling edge toggles the output relay R (flip-flop) from L1 to L2 or L2 to L1 whatever position is defined by the previous status. On Power-Up the relay R stays in off condition until the first falling edge is detected on S Terminal B1. To ensure a safe and optimal function, please turn both timing controllers on the front to the most left position (CCW), which equals 50 msec . In this operation mode, a minimum delay/ de-bump time of 50 msec is applied from the falling edge of the control input until relay R is changing its state. Is a longer delay time as 50 msec is set, a short pulse on the „ $S^{\prime \prime}$ input resets the times. The timer is restarted with the next falling edge signal on "S" input again. If you wish to apply longer delay times, set the according time selectors to the required values or contact your application engineer.

TELE'S DUPLEXER CONTROLS TWO loads simultane-

 ously and upgrades the regular alternating function by an integrated ON and OFF delay feature. The selector switch allows the user to lock in one sequence while the relay works with a wide range control voltage of 24 - 240 V AC/DC.OUR E1ZMLA is often used in special applications where optimization of load usage is required by balancing the runtime of two loads. Identical loads are used for the same task - one or more standby units are available in case the first load fails. However, an idle load might deteriorate due to lack of use and thereby
lose its safety margin. Alternating relays prevent this by assuring that multiple loads get equal run time. In addition, there are situations where a need arises to have multiple loads on at the same time for additional capacity if one load cannot keep up with demand.

This alternating functionality " LA " is initiated by a control switch, such as a float switch, manual switch, timing relay, pressure switch or other isolated contact. Each time the initiating switch is opened, the output relay contacts will change state, thus alternating the two loads. Two LED indicators show the status of the output relay, control voltage and timing function.

[^0]- Low profile selector switch
- 2 LEDs for relay status, timing and operating voltage indication
- cULus, CE, EAC, RoHs
- Rugged design for industrial applications
- Improved inventory maintenance

MODEL

ORDER INFORMATION
PART NO single package
PART NO packaging unit (10 pcs)

$110100(12-240 \mathrm{~V})$	110202	110217	-	110218
$110200(24-240 \mathrm{~V})$				
$110100 \mathrm{~A}(12-240 \mathrm{~V})$	110202 A	-	110206 A	-
$110200 \mathrm{~A}(24-240 \mathrm{~V})$				

FUNCTIONALITY

E ON delay
R OFF delay
Es ON delay with control
contact
Wu Single shot leading edge, voltage-controlled

Ws Single shot leading edge with control contact

Wa Single shot trailing edge with control contact

Bp Flasher pause first
W/t Pulse repetition analysis
Wtf Pulse sequence
monitoring edge triggered
Wto Pulse sequence
monitoring edge triggered
with on state
WsWa Single shot leading
and trailing edge with
control contact
La Load alternator -
pump changer

POWER SUPPLY CIRCUIT

Supply voltage

Setting range

TIME CIRCUITS

Time ranges
Setting range

$$
0.05 \mathrm{~s}-100 \mathrm{~h}
$$

INPUT CIRCUIT
Control signal

OUTPUT CIRCUIT
Number of switching contacts
Max. switching capacity
1 CO contact
1 CO contact
2000VA (8A / 250V AC)

DESIGN

Dimensions ($\mathrm{W} \times \mathrm{H} \times \mathrm{D}$)
Certificates
$17.5 \times 87 \times 65 \mathrm{~mm}$
$35 \times 87 \times 65 \mathrm{~mm}$
CE, cULus, EAC
CE, cULus, EAC
CE, EAC
CE, cULus, EAC
CE, cULus, EAC

ORDER INFORMATION

PART NO single package	111101	110101	110301	110500	110310
FUNCTIONALITY	emergency light tester	ON delay	asymmetric flasher	asymmetric flasher	star-delta
ER ON delay and OFF delay with control contact	-				
EWU ON delay single shot leading edge, voltage-controlled	\bullet				
Ws Single shot leading edge with testkey				\bullet	
EWs ON delay single shot leading edge with control contact	\bullet				
Ip Asymmetric flasher pause first		\bullet			
li Asymmetric flasher pulse first		-			
Wt Pulse repetition analysis	\bullet				
WsWa Single shot leading and trailing edge with control contact	-				

FUNCTIONALITY STAIRCASE

 LIGHTING TIMERT Automatic timer without
switch-off warning
TW Automatic timer with
switch-off warning
1 Steady light (ON)
0 Switch-off
P Impulse switch mode without time function (only types with option P)

PN Impulse switch mode power fail latch (only types with option PN)

POWER SUPPLY CIRCUIT

Supply voltage
Frequency range

TIME CIRCUITS

Time ranges
Setting range
12-240V AC/DC

$$
\begin{aligned}
& 230 \mathrm{VAC} \\
& 48-63 \mathrm{~Hz}
\end{aligned}
$$

7	7	1	1	1
$1 \mathrm{~s}-100 \mathrm{~h}$	$1 \mathrm{~s}-100 \mathrm{~h}$	$0,5-12 \mathrm{~min}$	$10 \mathrm{~min}-3 \mathrm{~h}$	$6-60 \mathrm{~min}$

INPUT CIRCUIT

Control signal

OUTPUT CIRCUIT

Number of switching contacts

Max. switching capacity
$12-240 \mathrm{~V} \mathrm{AC/DC}$
DC

1s-100h

230 V AC

10 min $-3 h$
6-60min

DESIGN

Dimensions $(W \times H \times D)$
Certificates
$35 \times 87 \times 65 \mathrm{~mm}$
CE, cULus, EAC
CE, cULus, EAC
CE, EAC
$17,5 \times 87 \times 65 \mathrm{~mm}$
CE, EAC
CE, EAC

MODEL	V2ZM10	V2ZQ10	V2Z110	V2ZS20	V2ZA10 3MIN	V2ZET
ORDER INFORMATION						
PART NO Screw terminal	125100	125150	125200	125300	125500	$\begin{aligned} & 125130 \text { (12-240V AC/DC) } \\ & 125132 \text { (50ms 230V AC) } \\ & 125133 \text { (50ms 110V AC) } \end{aligned}$
PART NO Push-in terminal	125600	125650	125210	125310	125510	-
PART NO packaging unit (10 pcs)	125100A	125150A	-	-	-	-
FUNCTIONALITY	multifunction		2-time multifunction	star-delta	multifunction	ON delay 2 wire
E ON delay	-	\bullet			\bullet	
ET ON delay 2 wire connected						-
A OFF delay without auxiliary voltage					-	
R OFF delay	-	-				
Ec Additive ON delay	-					
Es ON delay with control input	-					
Wu Single shot leading edge voltage controlled	-	-				
nWu Maintained single shot leading edge					\square	
Ws Single shot leading edge with control input	-					
Wa Single shot trailing edge with control input	-					
nWa Maintained single shot trailing edge					\bullet	
nWuWa Maintained single shot leading and trailing edge					-	
Bi Flasher pulse first	\bullet					
Bp Flasher pause first	0	-				
Wt Pulse sequence monitoring	\bullet					
Ip Asymmetric flasher pause first			\bullet			
Ii Asymmetric flasher pulse first			-			
S Star-delta start-up				-		

SUPPLY CIRCUIT

Supply voltage

Frequency range

$\begin{gathered} 12-240 \mathrm{~V} \\ \text { AC/DC } \end{gathered}$	$\begin{gathered} 24-240 \mathrm{~V} \\ \text { AC/DC } \end{gathered}$	12-240V AC/DC	12-240V AC/DC	24-240V AC/DC	$\begin{gathered} 12-240 \mathrm{~V} \text { AC/DC } \\ (125130) \\ 230 \mathrm{~V} \text { AC }(125132) \\ 110 \mathrm{~V} \text { AC (125133) } \end{gathered}$

TIME CIRCUITS

Time ranges	10	10	4	4	$\begin{gathered} 5(125130) \\ 1(125132,125133) \end{gathered}$
Setting range	0,05s - 100 h	0,05s - 100 h	0,05s - 3 min	0,1s - 3 min	$\begin{gathered} 0,05 \mathrm{~s}-1 \mathrm{~h}(125130) \\ 50 \mathrm{~ms}(125132,125133) \end{gathered}$

INPUT CIRCUIT

Control signal

OUTPUT CIRCUIT

Number of switching contacts
Max. switching capacity

| 1 CO contact | 1 CO contact | 2 NO contact | 1 CO contact | 1 thyristor |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $2000 \mathrm{VA}(8 \mathrm{~A} / 250 \mathrm{~V} \mathrm{AC})$ | $2000 \mathrm{VA}(8 \mathrm{~A} / 250 \mathrm{~V} \mathrm{AC})$ | $750 \mathrm{VA}(3 \mathrm{~A} / 250 \mathrm{~V} \mathrm{AC})$ | $2000 \mathrm{VA}(8 \mathrm{~A} / 250 \mathrm{~V} \mathrm{AC})$ | $125 \mathrm{VA} / 250 \mathrm{~V} \mathrm{AC}$ |

DESIGN

Dimensions (W $\times \mathrm{H} \times \mathrm{D}$)
Certificates

MODEL
G2ZM20
G2ZMF11
G2ZI20
G2ZIF20
G2ZA20

ORDER INFORMATION

PART NO Screw terminal
PART NO Push-in terminal

FUNCTIONALITY

E ON delay
A OFF delay without auxiliary voltage
R OFF delay
ER ON delay and OFF delay with
control contact
Es ON delay with control input
Wu Single shot leading edge voltage controlled

EWu ON delay single shot leading edge with control contact
nWu Maintained single shot
leading edge
Ws Single shot leading edge with
control input
EWs ON delay single shot leading edge with control contact
Wa Single shot trailing edge with
control input
nWa Maintained single shot trailing edge
nWuWa Maintained single shot
leading and trailing edge
WsWa Single shot leading and single
shot trailing edge with control contact
Bi Flasher pulse first
Bp Flasher pause first
Ip Asymmetric flasher pause first
li Asymmetric flasher pulse first

POWER SUPPLY CIRCUIT

Supply voltage

Frequency range

TIME CIRCUITS

Time ranges
Setting range

INPUT CIRCUIT

Control signa
Remote potentiometer

OUTPUT CIRCUIT

Number of switching contacts	2 CO contact	1 delayed/ 1 instantaneous CO contact	2 CO contact	2 CO contact	2 CO contact
Max. switching capacity			A 5 / 250		

DESIGN

Dimensions ($\mathrm{W} \times \mathrm{H} \times \mathrm{D}$)
Certificates

$12-240 \mathrm{~V} \mathrm{AC/DC}$	$24-240 \mathrm{~V}$ or freely selectable via power module TR2, SNT2	$12-240 \mathrm{~V}$ AC/DC	$24-240 \mathrm{~V}$ or freely selectable via power module TR2, SNT2	$24-240 \mathrm{~V}$ or freely selectable via power module TR2, SNT2
		$48-63 \mathrm{~Hz}$		

7	16	7	10
$0,05 s-100 h$	$0,05 s-30 d$	$0.05 s-100 h$	$0,05 s-10 h$

$22.5 \times 67 \times 76 \mathrm{~mm}$
CE, cULus, EAC (devices with push-in terminal are not cULus listed)

MODEL
K3ZM20
K3ZM20P
K3ZA20 3MIN
K3ZI20
K3ZS20

ORDER INFORMATION

PART NO

FUNCTIONALITY

E ON delay
A OFF delay without
auxiliary voltage
R OFF delay
ER ON delay and OFF delay with control contact

Es ON delay with control input
Wu Single shot leading edge
voltage controlled
EWu ON delay single shot lead ing edge with control contact
nWu Maintained single shot leading edge
Ws Single shot leading edge
with control input
EWs ON delay single shot leading
edge with control contac
Wa Single shot trailing edge
with control input
nWa Maintained single shot
trailing edge
nWuWa Maintained single shot
leading and trailing edge
WsWa Single shot leading and
single shot trailing edge with
control contact
Bp Flasher pause first
Ip Asymmetric flasher pause first
Ii Asymmetric flasher pulse first
Wt Pulse sequence
monitoring
S Star-delta start-up

SUPPLY CIRCUIT

Supply voltage
Frequency range

TIME CIRCUITS

INPUT CIRCUIT

Control signal

Time ranges	7	7	4	7	4
Setting range	0,05s - 100 h	0,05s-100h	0,1s-3min	0,05s-100h	0,05s - 3 min

12-240V AC/DC
12 - 240V AC/DC
24-240V AC/DC

$$
48-63 \mathrm{~Hz}
$$

$0,1 \mathrm{~s}-3 \mathrm{~min}$
0,05s - 100 h
$0,05 s-3 m i n$

OUTPUT CIRCUIT

Number of switching contacts
Max. switching capacity

2 CO contacts

2000VA (8A / 250V AC)

DESIGN

Dimensions (W $\times H \times D$)
Certificates
$38 \times 51 \times 80 \mathrm{~mm}$
CE, EAC

SUPPLY CIRCUIT

Supply voltage DC
Supply voltage AV
Frequency range

TIME CIRCUITS

Time ranges
Setting range

$$
\begin{gathered}
24 \mathrm{~V} \\
24 \mathrm{~V}, 110-240 \mathrm{~V} \\
48-63 \mathrm{~Hz}
\end{gathered}
$$

depends on selected KAPPA relays
depends on selected KAPPA relays
depends on selected KAPPA relays

PACKAGING UNIT

$$
1 \text { or } 10 \text { pcs } 10 \text { pcs }
$$

INPUT CIRCUIT

Control signal
Remote potentiometer

OUTPUT CIRCUIT

Number of switching contacts	2 CO contacts	$1 \mathrm{CO}+1 \mathrm{NO}$ contact	$1 \mathrm{NC}+1 \mathrm{NO}$ contact	depends on selected KAPPA relays
Max. switching capacity	2000VA (8A / 250V AC)	2000VA (8A / 250V AC)	2000VA (8A / 250V AC)	depends on selected KAPPA relays

DESIGN

Dimensions (W $\times H \times D$)
Certificates
$38 \times 51 \times 80 \mathrm{~mm}$
CE, EAC

$38 \times 61,5 \times 26 \mathrm{~mm}$	$38 \times 75 \times 26 \mathrm{~mm}$
CE, cULus, CSA	CE, cULus, CSA

Remote potentiometer can be found on page 47

Timing relays for various applications

Safe switch-off

E1ZM10 24-240 To prevent fire hazard, the stove in a dormitory shared kitchen must switch off safely after a defined period of time. The switch needs to perform even if the central pushbutton has been illegally blocked.

Fluid level monitoring

V2ZQ10 In pools of a wastewater treatment plant the use of the timing relay with Function E (switchon delay) delays reading of the switch contact until the next usable measurement, and thereby prevents "flutter switching".

Monitoring of a cold store door

G2ZMF11 As soon as the control contact (Y1-Y2) is interrupted by opening the cold store door the cooling is switched off directly and the set time t starts to run. If the cold store door remains open for longer than the selected time, the delayed contact deactivates and an acoustic signal is triggered. This prevents the door from remaining open for too long or being improperly closed.

Monitoring Relays
 Function Overview

O OVER

U UNDER

If the measured value falls below the adjusted MIN threshold, the output relay switches into off-position. The output relay switches into on-position again, as soon as the measured value exceeds the adjusted MAX threshold.

If the measured value exceeds the adjusted MAX threshold, the output relay switches into off-position. The output relay switches into on-position again, as soon as the measured value falls below the adjusted MIN threshold.

W WINDOW

If the measured value falls below the adjusted MIN threshold, the output relay switches into off-position. The output relay switches into on-position again, as soon as the measured value exceeds the adjusted MIN threshold. If the measured value exceeds the adjusted MAX threshold, the output relay switches into offposition. The output relay switches into on-position again, as soon as the measured value falls below the adjusted MAX threshold.

2MIN MINIMUM MONITORING

If the measured value falls below the adjusted MAX threshold, the output relay Rel1 switches into offposition. If the measured value falls below the adjusted MIN threshold, the output relay Rel2 switches into off-position. The output relays Rel1 and Rel2 switch into on-position again, as soon as the measured value exceeds the according adjusted threshold (MAX or MIN).

2MAX MAXIMUM MONITORING

MM MINIMUM AND MAXIMUM MONITORING (MIN/MAX)

If the measured value exceeds the adjusted MIN threshold, the output relay Rel2 switches into off-position. If the measured value exceeds the adjusted MAX threshold, the output relay Rel1 switches into off-position. The output relays Rel1 and Rel2 switch into on-position again, as soon as the measured value falls below the according adjusted threshold (MAX or MIN).

If the measured value falls below the adjusted MIN threshold, the output relay Rel2 switches into offposition. The output relay Rel2 switches into on-position again, as soon as the measured value exceeds the adjusted MIN threshold. If the measured value exceeds the adjusted MAX threshold, the output relay Rel1 switches into off-position. The output relay Rel1 switches into on-position again, as soon as the measured value exceeds the adjusted MIN threshold.

TEMP TEMPERATURE MONITORING

If the supply voltage U is applied and the cumulative resistance of the PTC-circuit is less than $3.6 \mathrm{k} \Omega$ (standard temperature of the motor), the output relay R switches into on-position. When the cumulative resistance of the PTC-circuit exceeds $3.6 \mathrm{k} \Omega$, the output relay switches into off-position. The output relay switches into on-position again after the cumulative resistance falls below $1.6 \mathrm{k} \Omega$.

SEQ PHASE SEQUENCE MONITORING

When all phases are connected in the correct sequence and the measured asymmetry is less than the fixed value, the output relay switches into on-position (yellow LED illuminated). When the phase sequence changes, the output relay switches into off-position (yellow LED not illuminated). It is recommended to connect the neutral wire of the monitoring relay once loads in the system use neutral connection.

PHASE FAILURE MONITORING

As soon as one of the three phases fails, the output relay R switches into off-position (yellow LED not illuminated). For reliable phase loss detection, the asymmetric function should be enabled. It is recommended to connect the neutral wire of the monitoring relay once loads in the system use neutral connection.

PUMP UP

Connection of the probe rods E1, E2 and E3. When the air-fluid level falls below the minimum probe E2 the set interval of tripping delay begins. After the expiration of the interval, the output relay R switches into onposition. When the air-fluid level again rises above the maximum probe E1, the set interval of turn-off delay begins. After the expiration of the interval the output relay switches into off-position.

PUMP DOWN

Connection of the probe rods E1, E2 and E3. When the maximum probe E1 gets moistened the set interval of tripping delay begins. After the expiration of the interval the output relay R switches into on-position. When the airfluid level falls below the minimum probe E2, the set interval of turn-off delay begins. After the expiration of the interval, the output relay switches into off-position.

LATCH (ERROR MEMORY)

If the device detects a fault, the output relay only switches on again when the fault latch has been reset. The fault latch can be reset by means of an internal or external reset button or by interrupting the supply voltage.

ASYM ASYMMETRY MONITORING

If the asymmetry of the phase-to-phase voltages exceeds the value set at the ASYM-regulator, the output relay switches into off-position. If the neutral wire is connected to the device, the asymmetry of the phase voltages referred to the neutral wire (Y-voltage) is monitored also. In that case both values of the asymmetry are evaluated and if one of the values exceeds the value set at the ASYM-regulator, the output relay switches into off-position.

ON DELAY

DELAY

If the monitored value leaves the selected range, the output relay only switches into off-position following expiry of the trip delay.

START START-UP SUPPRESSION

The output relay switches on when the supply voltage is applied. Changes to measured variables have no impact on the setting of the output relay during start up suppression.

I = $\mathbf{0}$ RECOGNITION OF DISCONNECTED CONSUMERS

When the current flow between i and k is interrupted the output relay switches into off-position. When the current flow is restored, the measuring cycle is restarted with the set interval of the start-up supression.

Abstract

TELE's new V4LM4S30 24-240V AC/DCV electrode relay for level monitoring in conductive fluids combines 10 different functions in one very compact device. It monitors the level of a fluid via probes, which are directly immersed.

Depending on the function selected, the V4LM controls the pumping in and pumping out as well as the running dry and overflow alarm. The device is utilized wherever observing a defined fill level represents an important criterion for the function, efficiency and safety. It protects machines and systems from leakage damage, fluid loss as well as running dry or overflow.

FUNCTION

Unlike float switches, the TELE V4LM has no moving parts and thus has a long durability. In contrast to ultrasonic and radar measurements, the device is
resistant to contamination, dust, foam and mist in the containers. With extremely low probe voltage, small measuring currents and a large sensitivity window from 0.25 to 500 kOhm , the fill level measurement is suitable for feed applications and does not endanger animals. The selected measuring frequency of 18.3 Hz enables an extremely robust measurement without interference (no harmonics to mains frequency 50 or 60 Hz). In addition, the alternating current measurement prevents the build-up of oxyhydrogen gas as well as electrolytic disintegration of the probes, which can occur with comparable devices with direct current measurement.

Advantages

- No moving parts (compared to a float switch)
- Robust against soil, dust, foam, mist in the containers (contrary to ultrasound and radar measurements)
- Extremely low probe voltage and measuring currents, therefore also suitable for animal feeding application
- Large sensitivity window (0.25 to 500 kOhm)
- Robust measurement without interference by selecting the measuring frequency of 18.3 Hz (no harmonic to mains frequency 50 or 60 Hz), AC measurement also avoids oxyhydrogen gas formation and electrolytic decomposition of the probe.

PUMP UP WITH MIN-/MAX- ALARM

Level control between probes E2 and E3 by pumping up. The probes E1 and E4 serve as overflow - respectively as dry running alarm and may be used to control alarm devices, valves or additional pumps.

PUMP UP AND DOWN (bidirectional) WITH MINIMUM ALARM (3b-)

FUNCTION 3

The level is controlled by pumping in and out around the level of probe E3. One example of the minimum alarm via probe E4 is used in dry-running warnings.

TWO INDEPENDENT CONTAINERS - PUMP UP (2u2)
FUNCTION 5

Pump up between probes E1-E2 respectively E3-E4 (alternatively control by one probe at a time). This feature allows level control in two separate containers with only one device. It is also possible to control cascades.

PUMP UP WITH INTEGRATED PUMP CHANGE

FUNCTION 7

(2uc) 1 container, 2 probes, 2 pumps
Pump up between control probes E1 and E2. The V4LM acts as an intelligent pump changer (for even use) with pump monitoring (feedback inputs E3 \& E4). If a pump fails, the remaining pump is permanently prioritized and an alarm is issued, for maximum availability and uninterrupted operation through full redundancy.

WELL CONTROL (3w-) WITH WELL AND DRY ALARM

well, 1 high tank, 3 probes, 1 pump

FUNCTION 2

PUMP DOWN WITH MIN-/MAX- ALARM

(2dA) 1 container, 4 probes, 1 pump

Level control between probes E2 and E3 by pumping down. The probes E1 and E4 serve as overflow - respectively as dry running alarm and may be used to control alarm devices, valves or additional pumps.

PUMP UP AND DOWN (bidirectional) WITH MAXIMUM ALARM (3b+)
 container, 4 probes, 2 pumps

FUNCTION 4

The level is maintained by pumping in and out around the level of probe E2. A maximum alarm via probe E1 warns of liquid overflow. Functions 3 and 4 can be changed during full operation.

TWO INDEPENDENT CONTAINERS - PUMP DOWN (2d2)
FUNCTION 6

Pump down between probes E1-E2 respectively E3-E4 (alternatively control by one probe at a time). This feature allows level control in two separate containers with only one device. It is also possible to control cascades.

FUNCTION 8
INTEGRATED PUMP CHANGE

Pump down between control probes E1 and E2. The V4LM acts as an intelligent pump changer (for even use) with pump monitoring (feedback inputs E3 \& E4). If a pump fails, the remaining pump is permanently prioritized and an alarm is issued, for maximum availability and uninterrupted operation through full redundancy.

CODE OUTPUT FOR PLC CONNECTION

FUNCTION 10

(4ce) 1 container, 4 probes

The function serves to ensure the water supply by means of a high tank and a
 well (pump up into the high tank from the well). Alarm functions: well alarm and dry alarm (high tank and well without water). The pump is protected against dry running in case liquid levels of a well (or feeding container) fall below a minimum value.

The 3 output relays are used to output the probe states by means of coding. Up to 4 level levels can be evaluated for one container. By connecting to an external controller, individual application conditions can be taken into account. Simple connection without external control unit can also protect up to four containers, with one probe each against overflow or dry running, and trigger a collective alarm

TELE pump alternators save life cycle costs and prevent production downtime.

Pump systems cause around a quarter of the world's electricity consumption. For this reason, consequent analysis of operating data and long-term optimization of the pump design offer enormous energy-saving potential. In addition, malfunctions that are not recognized in time cause around 70 percent of a pump's life cycle costs, often leading to production downtimes and resulting in high costs.

PUMP MONITORING

This risk can be eliminated by appropriate monitoring, by measuring performance drops at an early stage and triggering an alarm or control measures. TELE has a whole series of devices, such as E1ZMLA, G2ASMA20 or V4LMS30 for this application. The devices recognize all unfavorable operating conditions of a pump, such

[^1]as wear, but also blockage, wrong running, filter contamination, hot running, cavitation, temperature and dry running. In addition, some devices feature an integrated temperature monitor, which detects increased motor temperature, for example due to phase failure, frequent start-ups or blockages. Error states are reported immediately and thanks to timely maintenance, consequential damage to the system and thus expensive production downtimes can be avoided.

PUMP CONTROL FOR

PARALLEL OPERATION

For direct pump control, soft starters for pump start/stop as well as pump changers for alternately controlling pumps are used. In conveyor systems, pumps are usually designed to be redundant in order to maintain the system function in the event of machine damage and to cover short-term delivery peaks through parallel operation. Here the TELE pump alternator G2ASMA20 guarantees the alternating operation of both pumps, so that the reserve pump remains functional and does not fail in case of need.

MODEL

PART NO single package	1340200	1341200	1341201	1341404	1341402
FUNCTIONALITY	1-phase ac current monitoring	1--phase AC/DC current monitoring	1-phase AC current monitoring	3-phase AC voltage monitoring	3-phase AC voltage monitoring
O ... Over	-	-			
U ... Under	\bullet	-	-	\bullet	\bullet
w ... Window	-	-			
Test function					\bullet

SWITCHING THRESHOLD

Maximum
Minimum

$10-100 \%$ of I_{N}	$10-100 \%$ of I_{N}
$5-95 \%$ of I_{N}	$5-95 \%$ of I_{N}

50-500mA
fixed, 195.5V (0.85)
fixed, 195.5V (0.85)
Asymmetry

MEASURING CIRCUIT

Measuring variable	current AC sinus	current AC/DC AC sinus	current AC sinus	$3(N) \sim$ AC sinus	$3(N) \sim$ AC sinus
Measuring input	10A AC	100mA / 1 A / 10A AC/DC	500mA AC*	$\mathrm{U}_{\mathrm{N}}=400 / 230 \mathrm{~V} \mathrm{AC}$	$U_{N}=400 / 230 \mathrm{~V} \mathrm{AC}$

SUPPLY CIRCUIT

Supply voltage

Frequency range

230 V AC		
-15% to $+15 \%$	230V AC	230 V AC
	$48-63 \mathrm{~Hz}$	

= measuring voltage	$=$ measuring voltage
$3(\mathrm{~N}) \sim 400 / 230 \mathrm{VAC}$	$3(\mathrm{~N}) \sim 400 / 230 \mathrm{~V} \mathrm{AC}$
-30% to $+30 \%$	-30% to $+30 \%$

TIME CIRCUITS

Start-up surpression time (START)

Tripping delay (DELAY)
ON delay

-	$0-10 s$	$0-20 \min$	-
$0,1-10 s$	$0,1-10 s$	$0-20 \min$	-
-	-	-	fixed, 1 min

OUTPUT CIRCUIT

Number of switching contacts
Max. switching capacity

1 CO contact	2 CO contact	2 CO contact	2 CO contact	2 CO contact
$1250 \mathrm{VA}(5 \mathrm{~A} / 250 \mathrm{~V} \mathrm{AC})$	$1250 \mathrm{VA}(5 \mathrm{~A} / 250 \mathrm{~V} \mathrm{AC})$	$1250 \mathrm{VA}(5 \mathrm{~A} / 250 \mathrm{VAC})$	$1250 \mathrm{VA}(5 \mathrm{~A} / 250 \mathrm{~V} \mathrm{AC})$	$1250 \mathrm{VA}(5 \mathrm{~A} / 250 \mathrm{~V} \mathrm{AC})$

DESIGN

Dimensions (W $\times \mathrm{H} \times \mathrm{D}$)
Certificates
CE, cULus, EAC
CE, EAC
$35 \times 87 \times 65 \mathrm{~mm}$
CE, EAC
CE, cULus, EAC

* For currents greater than 5A, matching current transformers are available as accessories and can be found on page 49.

SWITCHING THRESHOLD
Minimum
Asymmetry

MEASURING CIRCUIT

Measuring variable

Measuring input

| | | | fixed, $195.5 \mathrm{~V}(0.85)$ | fixed, 195.5 V |
| :---: | :---: | :---: | :---: | :---: | :---: |
| fixed, $161 \mathrm{~V}(0.70)$ | | | | |

SUPPLY CIRCUIT

Supply voltage

Frequency range

$3(N) \sim$ AC sinus	$3(N) \sim$ AC sinus	3~ AC sinus	$3(N) \sim$ AC sinus	$3(N) \sim$ AC sinus
$\mathrm{U}_{\mathrm{N}}=400 / 230 \mathrm{~V}$ AC	$U_{N}=400 / 230 \mathrm{~V} \mathrm{AC}$	$\begin{aligned} & \mathrm{U}_{\mathrm{N}}=208 / 120 \mathrm{~V} \\ & \text { to } 480 / 277 \mathrm{~V} \mathrm{AC} \end{aligned}$	$\mathrm{U}_{\mathrm{N}}=400 / 230 \mathrm{~V}$ AC	$\mathrm{U}_{\mathrm{N}}=400 / 230 \mathrm{~V}$ AC

TIME CIRCUITS

Tripping delay (delay
fixed, approx. 100 ms fixed, approx. 100 ms fixed, approx. 100 ms fixed, approx. 200 ms fixed, approx. 200 ms
OUTPUT CIRCUIT
Number of switch contacts
Max. switching capacity
1 CO contact 1 CO contact $\quad 1$ CO contact $\quad 1$ CO contact $\quad 2$ CO contacts

DESIGN

Dimensions (W×H×D)
Certificates

$17.5 \times 87 \times 65 \mathrm{~mm}$	$35 \times 87 \times 65 \mathrm{~mm}$			
$C E, E A C$	$C E, E A C$	$C E$, cULus, EAC	$C E, E A C$	CE, CULUS, EAC

MODEL	E1YM400 VS10	E1YM480/277 VS10	E3YM230 VS20	E1UM230 V01	E3LM10 230 VAC

ORDER INFORMATION

PART NO single package	1340405	1340409	1341406	1340101	1341500
FUNCTIONALITY	3- and 1-phase AC voltage monitoring	3-phase AC voltage monitoring	3- and 1-phase AC voltage monitoring	1-phase AC/DC voltage monitoring	level monitoring of conductive liquids
U ... Under	\bullet	-	-	\bullet	
W ... Window	-	-	0	-	
SEQ ... Phase sequence	-	-	\bullet		
Phase failure			\bigcirc		
Pump up					-
Pump down					-

SWITCHING
THRESHOLD
Maximum
Minimum
Asymmetry

$80-130 \%$ of U_{N}	$75-110 \%$ of U_{N}	$80-130 \%$ of U_{N}	$80-120 \%$ of U_{N}
$70-120 \%$ of U_{N}	$65-100 \%$ of U_{N}	$70-120 \%$ of U_{N}	$75-115 \%$ of U_{N}
$5-25 \%$, OFF	-	-	-

MEASURING CIRCUIT

Measuring variable

Measuring input

$3(\mathrm{~N}) \sim$ AC sinus	$3 \sim$ AC sinus
$\mathrm{U}_{\mathrm{N}}=400 / 230 \mathrm{VAC}$	$\mathrm{U}_{\mathrm{N}}=480 / 277 \mathrm{~V} \mathrm{AC}$

3(N)		
AC sinus	voltage AC/DC	liquid level via AC sinus
$\mathrm{U}_{\mathrm{N}}=230 / 132 \mathrm{~V} \mathrm{AC}$	$24 \mathrm{~V} \mathrm{AC/DC;} 230 \mathrm{~V} \mathrm{AC}$	conductive probes

SUPPLY CIRCUIT

Supply voltage

Frequency range

= measuring voltage	$=$ measuring voltage
$3(\mathrm{~N}) \sim 400 / 230 \mathrm{VAC}$	
-30% to $+30 \%$	$3 \sim 480 / 277 \mathrm{VAC}$
	-35% to $+10 \%$
$48-63 \mathrm{~Hz}$	$48-63 \mathrm{~Hz}$

$\begin{gathered} =\text { measuring voltage } \\ 3(\mathrm{~N}) \sim 400 / 230 \mathrm{~V} \text { AC } \\ -30 \% \text { to }+30 \% \end{gathered}$	= measuring voltage 24V AC/DC; 230V AC -25% to $+20 \%$	$\begin{gathered} \text { 230V AC } \\ -15 \% \text { to }+10 \% \end{gathered}$
$48-63 \mathrm{~Hz}$	$48-63 \mathrm{~Hz}$ or DC	$48-63 \mathrm{~Hz}$

TIME CIRCUITS
Tripping delay (delay)
OFF delay

$0.1-10 s$	$0.1-10 s$	$0-30 s$	-
-	-	-	-

OUTPUT CIRCUIT

Number of switch contacts	1 CO contact	1 CO contact	2 CO contacts	1 CO contact	1 CO contact
Max. switching capacity	1250VA (5A / 250V AC)				

DESIGN

Dimensions (W x H x D)
Certificates

$17.5 \times 87 \times 65 \mathrm{~mm}$	$17.5 \times 87 \times 65 \mathrm{~mm}$
$C E, E A C$	$C E$, cULus, EAC

$35 \times 87 \times 65 \mathrm{~mm}$
$C E, E A C$
$17.5 \times 87 \times 65 \mathrm{~mm}$
$C E$, cULus, EAC
$35 \times 87 \times 65 \mathrm{~mm}$ CE, cULus, EAC

ORDER INFORMATION

PART NO screw terminal	2100000	2100500	2100300	2100600	2104200
PART NO push-in terminal	2100010	2100510	2100310	-	2104210
PART NO packaging unit (10 pcs)	2100000 A	-	-	-	-
FUNCTIONALITY	3-phase AC voltage monitoring	3-phase AC voltage monitoring	1-phase AC/DC voltage monitoring	1-phase voltage drop detector	3-phase AC voltage monitoring
U ... Under		-	-	-	
W ... Window		0	-		
SEQ ... Phase sequence	\bullet	-			-
Phase failure	0	-			-
ASYM ... Asymmetry	-				-
Voltage interruptions (fast detection)				\bullet	
Temperature monitoring (PTC)					-

SWITCHING THRESHOLD

Maximum
Minimum
Asymmetry

$$
\begin{aligned}
& 75-130 \% \text { of } U_{N} \\
& 70-125 \% \text { of } U_{N}
\end{aligned}
$$

$5-25 \%$, OFF
$80-115 \%$ of U_{N}
$75-110 \%$ of U_{N}
165 V AC -

MEASURING CIRCUIT

Measuring variable

Measuring input
3~
$A C$ sinus
$U_{N}=208 / 120 \mathrm{~V}$
$3 \sim$
$A C$ sinus
$U_{N}=400 / 230 \mathrm{VAC}$

voltage $A C / D C$ AC sinus	voltage $A C$
$24 \mathrm{~V} \mathrm{AC/DC} ; 230 \mathrm{~V} \mathrm{AC}$	$U_{N}=180-230 \mathrm{~V} \mathrm{AC}$

temperature, voltage 3~AC sinus
$U_{N}=208 / 120 \mathrm{~V}$
to $480 / 277 \mathrm{~V} \mathrm{AC}$

SUPPLY CIRCUIT

Supply voltage

Frequency range

$\begin{gathered} =\text { measuring voltage } \\ 3 \sim 208 / 120 \mathrm{~V} \\ \text { to } 480 / 277 \mathrm{~V} \mathrm{AC} \\ -10 \% \text { to }+10 \% \end{gathered}$	$\begin{gathered} =\text { measuring voltage } \\ 3(\mathrm{~N}) \sim 400 / 230 \mathrm{~V} \text { AC } \\ -35 \% \text { to }+35 \% \end{gathered}$	$\begin{aligned} & =\text { measuring voltage } \\ & 24 \mathrm{~V} \mathrm{AC/DC;} 230 \mathrm{~V} \mathrm{AC} \\ & 24 \mathrm{~V}:-30 \% \text { to }+30 \% \\ & 230 \mathrm{~V}:-30 \% \text { to }+20 \% \end{aligned}$	$\begin{aligned} & =\text { measuring voltage } \\ & 230 \mathrm{~V} \mathrm{AC} \end{aligned}$	$\begin{gathered} =\text { measuring voltage } \\ 3 \sim 208 / 120 \mathrm{~V} \\ \text { to } 480 / 277 \mathrm{~V} \text { AC } \\ -10 \% \text { to }+10 \% \end{gathered}$
$48-63 \mathrm{~Hz}$	$16.6-400 \mathrm{~Hz}$	$16.6-400 \mathrm{~Hz}$ or DC	$48-63 \mathrm{~Hz}$	$48-63 \mathrm{~Hz}$

TIME CIRCUITS

ON delay

Tripping delay (delay)
Response time short voltage interruptions

approx. 400 ms	approx. 200 ms	approx. 300 ms	$0.5-10 \mathrm{~s}$	approx. 500 ms
$<250 \mathrm{~ms}$	$0.1-10 \mathrm{~s}$	$0.1-10 \mathrm{~s}$	-	approx. 250 ms
-	-	-	$10-40 \mathrm{~ms}$	

OUTPUT CIRCUIT

Number of switch contacts	1 CO contact	1 CO contact	1 CO contact	1 CO contact	2 CO contacts
Max. switching capacity			VA (8A / 250V		

DESIGN

Dimensions (W $\times \mathrm{H} \times \mathrm{D}$)
Certificates
$22.5 \times 67 \times 76 \mathrm{~mm}$
CE, cULUs, EAC
$22.5 \times 67 \times 76 \mathrm{~mm}$
CE, cULus, EAC
$22.5 \times 67 \times 76 \mathrm{~mm}$
$C E$, cULUs, $E A C$
$22.5 \times 67 \times 76 \mathrm{~mm}$
$C E, E A C$
$45 \times 67 \times 76 \mathrm{~mm}$
CE, cULus, EAC

[^2]

FUNCTIONALITY

O ... Over
U ... Under
W ... Window
2MAX ... 2 Maximum
MM ... Min. and max
+LATCH ... Error memory
Temperature monitoring (PTC)
Short circuit monitoring (PTC)

SWITCHING THRESHOLD
Maximum
Minimum

Zero...Zero point
Zero Fine...Fine setting zero point
Span...Measuring span

$\begin{gathered} \geq 3.6 \mathrm{k} \Omega \\ \text { (switch-off resistance) } \end{gathered}$	$10-100 \%$ of I_{N}	$10-100 \%$ of I_{N}	-	sensitivity: $10 \mathrm{k} \Omega-500 \mathrm{k} \Omega$ Vsense: 20, 40, 60, 80, 100\%
$\begin{gathered} \leq 1.6 \mathrm{k} \Omega \\ \text { (switch-on resistance) } \end{gathered}$	$5-95 \%$ of I_{N}	$5-95 \%$ of I_{N}	-	sensitivity: $250 \Omega-12.5 \mathrm{k} \Omega$ Vsense: 20, 40, 60, 80, 100\%
-	-	-	$0 \%, 25 \%, 50 \%$ and 75% of nominal value	-
-	-	-	$0-25 \%$ of nominal value	-
-	-	-	$25 \%, 50 \%, 75 \%$ and 100% of nominal value	-

MEASURING CIRCUIT
Measuring variable

Measuring input
temperature
current AC/DC
AC sinus
10A ACIDC

10A AC/DC
current AC/DC AC sinus V4IM100AL20: 00A AC/DC built-in current transformer V4IM35AL20: 35A AC/DC built-in current transformer

SUPPLY CIRCUIT

Supply voltage

Frequency range

TIME CIRCUITS

ON delay
Start-up surpression time (start)
Tripping delay (delay)
Delay (measuring filter)

	AC: $110-240 \mathrm{~V}$		AC: $48-240 \mathrm{~V}$	
$24-240 \mathrm{~V}$ AC/DC	DC: $24-240 \mathrm{~V}$	$24-240 \mathrm{~V}$ AC/DC	DC: $24-240 \mathrm{~V}$	24-240V AC/DC
-15% to +10\%	AC: -15% to $+15 \%$	AC: -15% to $+10 \%$	AC: -10% to $+10 \%$	AC: -10% to +10\%
	DC: -30% to $+30 \%$	DC: -30% to $+30 \%$	DC: -15% to $+20 \%$	DC: -25% to +25 $\%$

approx. 50 ms	approx. 300 ms	approx. 300 ms
-	-	$0-10 \mathrm{~s}$
-	$0.1-10 \mathrm{~s}$	$0.1-10 \mathrm{~s}$

liquid level with conductive probes (type SK1, SK5)
low (L): $250 \Omega-12.5 \mathrm{k} \Omega$ high (H): $10 \mathrm{k} \Omega-500 \mathrm{k} \Omega$

OUTPUT CIRCUIT

Analog output

Number of switch contacts
Max. switching capacity

Devices with Push-in terminal are not cULus listed.

ORDER INFORMATION

PART NO 2 CO contacts	2390000	$\begin{gathered} 2390504 \\ 2390505 \text { (24-240V AC/DC) } \end{gathered}$	$\begin{gathered} 2390100 \\ 2390104 \text { (230V AC) } \\ 2390111 \text { (24-240V AC/DC) } \end{gathered}$	$\begin{gathered} 2390101 \\ 2390110 \text { (24-240V AC/DC) } \end{gathered}$	$\begin{gathered} 2390201 \text { (24V AC) } \\ 2390202 \text { (110V AC) } \\ 2390200 \text { (230V AC) } \end{gathered}$
FUNCTIONALITY	3-phase AC voltage monitoring	3-phase AC voltage monitoring	temperature monitoring (PTC)	temperature monitoring (PTC)	level monitoring of conductive liquids
U ... Under		-			
W ... Window		-			
SEQ ... Phase sequence		-			
Phase failure	-	-			
ASYM ... Asymmetry	-	-			
Temperature monitoring (PTC)			-	\bullet	
Short circuit monitoring (PTC)				-	
Zero-voltage latch (PTC)				\bullet	
Test function (PTC)			-	\bullet	
Pump up					-
Pump down					-

SWITCHING THRESHOLD
Maximum

Minimum
Asymmetry

-	-20 to $+30 \%$ of U_{N}	$\begin{gathered} \geq 3.6 \mathrm{k} \Omega \\ \text { (switch-off resistance) } \end{gathered}$	$\begin{gathered} \geq 3.6 \mathrm{k} \Omega \\ \text { (switch-off resistance) } \end{gathered}$
-	-30 to $+20 \%$ of U_{N}	$\begin{gathered} \leq 1.6 \mathrm{k} \Omega \\ \text { (switch-on resistance) } \end{gathered}$	$\begin{gathered} \leq 1.6 \mathrm{k} \Omega \\ \text { (switch-on resistance) } \end{gathered}$
fixed, typ. 30\%	5-25\%, OFF	-	-

MEASURING CIRCUIT

Measuring variable
Measuring input

$3(\mathrm{~N}) \sim$				
AC sinus	$3(\mathrm{~N}) \sim$ $A C$ sinus	temperature	temperature	liquid level via conductive probes
$U_{N}=400 / 230 \mathrm{~V} \mathrm{AC}$	$3(\mathrm{~N}) \sim 400 / 230 \mathrm{~V}$	-	-	$0.25-100 \mathrm{k} \Omega$

SUPPLY CIRCUIT

Supply voltage

	$24-240 \mathrm{VAC/DC}$
= measuring voltage	or selectable via
3(N)~ 342-457V AC	power modules TR2,
	SNT2*

$24-240 \mathrm{~V} \mathrm{AC/DC;}$	$24-240 \mathrm{~V} \mathrm{AC/DC}$	24 V AC
230 V fixed	or selectable via	110 V AC
or selectable via	power modules TR2, SNT2*	230 V AC

fixed, max. 500 ms	-	-	-	-
fixed, max. 350 ms	0.1-10s	-	-	0.5-10s
-	-	-	-	0.5-10s
2 CO contacts	1 or 2 CO contacts	1 or 2 CO contacts	2 CO contacts	2 CO contacts
1250VA (5A / 250V AC)				

Start-up surpression time (START)
Tripping delay (delay)
OFF delay

OUTPUT CIRCUIT

Number of switch contacts
Max. switching capacity
1250VA (5A / 250V AC)

DESIGN

Dimensions (W $\times H \times D$)
$22.5 \times 90 \times 108 \mathrm{~mm}$
Certificates

* Please refer to the chapter accessories for detailed information and ordering data of power modules TR2 and SNT2.

MODEL
G2PU690 VS20
G2UM300 VL20
G2IM5 AL20
G2IM10 AL20
G2FW400 VL20
ORDER INFORMATION

PART NO 2 CO contacts	2390507	$\begin{gathered} 2390303 \\ 2390304 \text { (24-240V AC/DC) } \end{gathered}$	$\begin{gathered} 2390405 \\ 2390411 \text { (24-240V AC/DC) } \end{gathered}$	$\begin{gathered} 2390406 \\ 2390410 \text { (24-240V AC/DC) } \end{gathered}$	2390900
FUNCTIONALITY	3-phase voltage monitoring	1-phase AC/DC voltage monitoring	1-phase AC/DC current monitoring	1-phase AC/DC current monitoring	frequency monitoring
O ... Over		-	-	-	
U ... Under	\bullet	\bullet	\bullet	-	
W ... Window		\bullet	\bullet	-	\bullet
SEQ ... Phase sequence	-				
Phase failure	-				
ASYM ... Asymmetry	-				
+LATCH ... Error memory		-	\bullet	\bullet	-

SWITCHING THRESHOLD

Maximum	-	10-100\% of U_{N}	10-100\% of I_{N}	$10-100 \%$ of I_{N}	$\begin{aligned} & \mathrm{F}_{\mathrm{N}}=50 \Omega: 49-60 \Omega \\ & \mathrm{~F}_{\mathrm{N}}=60 \Omega: 59-70 \Omega \end{aligned}$
Minimum	180-690V	$5-95 \%$ of U_{N}	5-95\% of I_{N}	5-95\% of I_{N}	$\begin{aligned} & F_{N}=50 \Omega: 40-51 \mathrm{~Hz} \\ & F_{N}=60 \Omega: 50-61 \mathrm{~Hz} \end{aligned}$
Asymmetry	fixed, 25\%				

MEASURING CIRCUIT

Measuring variable	3~ $A C$ sinus	voltage AC/DC AC sinus	current AC/DC AC sinus	current AC/DC AC sinus	frequency 1-phase
Measuring input	$U_{N}=208-690 \mathrm{~V}$	$30 / 60$ / 300V AC/DC	20mA / 1A/5A AC/DC *	100mA / 1 A / 10A AC/DC	110-400V AC

SUPPLY CIRCUIT

Supply voltage

$=$ measuring voltage
$3 \sim 177 \mathrm{~V}$ to 794 V

24-240V AC/DC
or selectable via
power modules TR2,
SNT2**

$24-240 \mathrm{~V}$ AC/DC
or selectable via or selectable via SNT2**

TIME CIRCUITS

ON delay	-	-	-	-	0-10s
Start-up surpression time (start)	-	$0-10 \mathrm{~s}$	0-10s	0-10s	-
Tripping delay (delay)	0.1-10s	0.1-10s	0.1-10s	0.1-10s	$0.1-10 \mathrm{~s}$

OUTPUT CIRCUIT

Number of switch contacts
Max. switching capacity

2 CO contacts 2 CO contacts | 1 or 2 CO contacts |
| :---: |
| $1250 \mathrm{VA}(5 \mathrm{~A} / 250 \mathrm{VAC})$ |$\quad 1$ or 2 CO contacts 2 CO contacts

DESIGN

Dimensions ($\mathrm{W} \times \mathrm{H} \times \mathrm{D}$)
Certificates
CE, cULus, EAC
CE, cULus, EAC
$22.5 \times 90 \times 108 \mathrm{~mm}$

[^3]| | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| MODEL | K3PF400 VSY02 | K3YM400 VSY20 | K3IM1 AACL20
 K3IM5 AACL20 | K3UM230 VAC02 | K3UM24 VDC02 |
| ORDER INFORMATI | | | | | |
| PART NO | 1380301 | 1380402 | $\begin{aligned} & 1380203(1 A) \\ & 1380202(5 A) \end{aligned}$ | 1380107 | 1380106 |
| FUNCTIONALITY | 3-phase AC voltage monitoring | 3- and 1-phase AC voltage monitoring | 1-phase AC current monitoring | 1-phase AC voltage monitoring | 1-phase AC voltage monitoring |
| O ... Over | | | - | | |
| U ... Under | | \bullet | \bullet | - | - |
| W ... Window | | - | - | - | - |
| SEQ ... Phase sequence | \bullet | 0 | | | |
| Phase failure | - | | | | |
| ASYM ... Asymmetry | \bullet | \bullet | | | |
| +LATCH ... Error memory | | | \bullet | | |

SWITCHING THRESHOLD

Maximum	-	$80-130 \%$ of U_{N}	10-100\% of I_{N}	$80-120 \%$ of U_{N}	$80-130 \%$ of U_{N}
Minimum	-	$70-120 \%$ of U_{N}	$5-95 \%$ of I_{N}	$70-110 \%$ of U_{N}	$75-125 \%$ of U_{N}
Asymmetry	5-30\%, OFF	$5-30 \%$, OFF	-	-	-

MEASURING CIRCUIT

Measuring variable

Measuring input

$3(N) \sim$ AC sinus	$3(N) \sim$ AC sinus	current AC sinus	voltage AC $A C$ sinus	voltage AC
$U_{N}=400 / 230 \mathrm{VAC}$	$U_{N}=400 / 230 \mathrm{VAC}$	1 AAC or $5 \mathrm{AAC*}$	$U_{N}=230 \mathrm{~V} \mathrm{AC}$	$U_{N}=24 \mathrm{~V} D C$

SUPPLY CIRCUIT

Supply voltage

Frequency range

$\begin{gathered} =\text { measuring voltage } \\ 3(\mathrm{~N}) \sim 400 / 230 \mathrm{~V} \text { AC } \\ -30 \% \text { to }+30 \% \end{gathered}$	$\begin{gathered} =\text { measuring voltage } \\ 3(\mathrm{~N}) \sim 400 / 230 \mathrm{~V} \text { AC } \\ -30 \% \text { to }+30 \% \end{gathered}$	$\begin{gathered} 230 \mathrm{~V} \text { AC } \\ -15 \% \text { to }+10 \% \end{gathered}$	$\begin{gathered} =\text { measuring voltage } \\ \text { 3(N)~ 400/230V AC } \\ -30 \% \text { to }+20 \% \end{gathered}$	$\begin{gathered} =\text { measuring voltage } \\ 24 \mathrm{~V} \text { DC } \\ -25 \% \text { to }+30 \% \end{gathered}$
$48-63 \mathrm{~Hz}$	$48-63 \mathrm{~Hz}$	$48-63 \mathrm{~Hz}$	$48-63 \mathrm{~Hz}$	-

TIME CIRCUITS

Start-up surpression time (start)

-	-	$0-10 \mathrm{~s}$
fixed, approx. 100 ms	$0.1-10 \mathrm{~s}$	$0.1-10 \mathrm{~s}$

OUTPUT CIRCUIT

Number of switching contacts
Max. switching capacity
2 CO contacts
$1250 \mathrm{VA}(5 \mathrm{~A} / 250 \mathrm{~V} \mathrm{AC})$

DESIGN

Dimensions (W $\times H \times D$)
Certificates
$38 \times 51 \times 80 \mathrm{~mm}$
CE, EAC

[^4]
Monitoring relays have a wide range of uses

Fountain fill level

WITH THE TELE E3LM10，the fill level of the fountain is monitored with three sensors．With the water level too low，the current flow between the sensors is interrupted and the monitoring relay activates the pump．To prevent overflowing，the pump switches off when the third sensor comes into contact with the water．

No flooding in the underground car park

TELE LEVEL MONITOR V4LM continuously controls a potential increase of the water level in the garage facilities．Once the connected sensors come into contact with ingressing water，the relay immediately activates pumps to drain the liquid and sends acoustic and optical warning signals．

V－belt monitoring

THE POWER FACTOR METER G2FW

quickly recognizes whether a V－belt has broken or if it has become loose．A tripping delay ensures that no fault messages or acoustic or optical warning signals are sent to the control system in the event of small deviations．

TELE power monitoring systems offer significant advantages, particularly in situations in which monitoring tasks are usually carried out by sensors:

Benefits at a glance

- No problems due to contamination or measurement value drift of the sensors
- No maintenance and cleaning costs
- Easy to use, even in charged air or aggressive media
- Savings in terms of cabling
- No use of explosion-proof barriers necessary
- Reduction of error source
- Easy retrofitting

CURRENT MONITORING RELAYS

Pure current measurements in the supply to motors can only be used in an extremely restricted capacity to monitor loads. This is due to three essential factors:

01 In alternating current circuits, the measured current is apparent current. This total current comprises the sum of reactive and active current components. However, only the active current is relevant for the generation of mechanical power. The reactive current merely causes losses and does not contribute to the shaft power delivered.

02 In an underload range the current does not reduce in a linear manner with the load but instead remains relatively high due to the necessary magnetisation current. Therefore, no relevant correlation exists between current and load.

03 The current is dependent on the supply voltage. An undervoltage condition with a constant load can result in an increased current draw. To prevent such cases monitoring of the pure active current is insufficient.

This means that pure current monitoring is applicable only for extreme operating conditions, such as a drive blockage, because the current rises dramatically in such cases.

POWER MONITORING SYSTEMS WITH

 POWER FACTOR MEASUREMENT (COS φ) The power factor $\cos \varphi$ is the cosine of the phase shift angle between the current drawn and the voltage applied. For electrical motors this is dependent on the loading and theoretically equals 1 in an ideal case. In reality, the power factor at nominal load is practically in a range between 0.85 and 0.95 .In an underload range, the $\cos \varphi$ monitor is extremely significant because the proportion of losses increases sharply at lower loads and results in $\operatorname{acos} \varphi$ of up to <0.5 in an idle state. This is not applicable around the zero point and in an overload range because load changes cause only small changes of the phase shift angle φ.

POWER MONITORING SYSTEMS WITH EFFECTIVE POWER MEASUREMENTS

The effective power measurement facilitates obtaining the most precise feedback regarding the state of an electrical motor because the effective power is proportional to the shaft power. A direct correlation exists between the effective power supplied and the motor loading (torque at constant rotational speed) across the entire working range.

Examples for power monitor applications

- Waste compactors
- Crusher
- Agitators
- Conveyor belts
- Ventilation systems
- Machinery tools
- Bridge and portal cranes
- Centrifugal and piston pumps

MODEL	G2CM400 V10 AL20	G2BA400 V12 A 4-20MA G2BA400 V12 A 0-10 V

ORDER INFORMATION

PART NO

FUNCTIONALITY

O ... Overload monitoring
U ... Underload monitoring
W ... Window monitoring
2MIN ... Minimum monitoring
2MAX ... Maximum monitoring
MIN/MAX ... Minimum- and maximum monitoring
+LATCH ... Error memory
$\mathbf{I}=\mathbf{0}$ DETECTION ... Recognition of disconnected load
Temp ... Temperature monitoring of the motor

SWITCHING THRESHOLD

Zero ... Zero point
Zero Fine ... Fine setting zero point
Span ... Measuring span
Threshold P / P1

Threshold P2

MEASURING CIRCUIT

Measuring variable
Measuring range
Measuring input voltage
Overload capacity voltage
Measuring input current *
Overload capacity current

2390602
$\cos \varphi$ power factor in
1- or 3-phase mains
active power transducer in
1- or 3-phase mains

2390705

 2390708

G2BM400 V12 AL10 G2BM400 V12 AFL10

G4CM690 V16 ATL20

G4BM480 V12 ADTL20

$\begin{aligned} & 2390700 \\ & 2390702 \end{aligned}$	2394600	$\begin{gathered} 2394706 \text { (24-240V AC/DC) } \\ 2394700 \end{gathered}$
true power monitoring in 1- or 3-phase mains	$\cos \varphi$ power factor in 1- or 3-phase mains	true power monitoring in 1- or 3-phase mains
-		-
\bullet		\bullet
		-
	\bullet	-
	\bullet	\bullet
	-	-
\bullet	\bullet	-
\bullet	-	-
	\bullet	-

$$
\begin{array}{cc}
5-120 \% \text { of } P_{N} & \cos \varphi 1: 0,3-1 \text { (inductive) } \\
1-0,3 \text { (capacitive) }
\end{array}
$$

2.5kW: 120-2490W

10kW: 480-9960W
$\cos \varphi 1: 0,3-1$ (inductive)
$1-0,3$ (capacitive)
phase loads AC sinus
$0.5 \mathrm{~kW} \cdot 1 \mathrm{~kW} \cdot 2 \mathrm{~kW} \cdot 4 \mathrm{~kW}$
0 - 230V AC (single-phase) 0-415/240V (3~)

300V AC (single-phase) 500/289V (3~)
$0-6 \mathrm{~A}(0.5$ and 1 kW$)$
$0-12 \mathrm{~A}(2$ and 4 kW$)$
12A permanent
power factor $(\cos \varphi)$,
1- or 3-phase loads AC sinus

$$
0.3-1
$$

85-690V AC (single-phase) 85-690/400V (3~)

796 V AC (single-phase) 796/460V (3~)
$1-8 A$
$1-16 A$
20A permanent
true power,
1- or 3-phase loads AC sinus

$$
2.5 \mathrm{~kW} \cdot 10 \mathrm{~kW}
$$

0 - 480 V AC (single-phase) 0-480/277V (3~)

550V AC (single-phase) 550/318V (3~)
$0.15-6 \mathrm{~A}(2.5 \mathrm{~kW})$ $0.3-12 \mathrm{~A}(10 \mathrm{~kW})$

12A permanent

$\begin{aligned} & 1-100 \mathrm{~s}(\mathrm{AL} 10) \\ & 0.1-2 \mathrm{~s}(\mathrm{AFL} 10) \end{aligned}$	3-180s	0-100s
$\begin{aligned} & 0.1-50 \mathrm{~s}(\text { AL10 }) \\ & 0.1-2 \mathrm{~s}(\mathrm{AFL10}) \end{aligned}$	$1-50 \mathrm{~s}$	0.1-50s
Y1-Y2 (Latch)	Y1-Y2 (Latch)	Y1-Y2 (Latch)
-	-	-
1 CO contact	2 CO contacts	2 CO contacts
1250VA (5A / 250V AC)	1250VA (5A / 250V AC)	1250VA (5A / 250V AC)
$22.5 \times 90 \times 108 \mathrm{~mm}$	$45 \times 90 \times 108 \mathrm{~mm}$	$45 \times 90 \times 125 \mathrm{~mm}$
CE, cULus, EAC	CE, cUlus, EAC	CE, cULus, EAC

Timing Relays
 Function Overview

Our timing relays have a variety of functions here they are in detail:

U	Supply voltage
LED	LED status indication
LED U	LED status indication supply voltage
LED R	Led status indication relay output

| LED U/t LED status indication for supply voltage
 and timing of function
 R Relay output
 T Thyristor output |
| :--- | :--- |

S	Control/Trigger input
Y	Star/Wye time
Δ	Delta time
t	Set time

E ON DELAY

When the supply voltage U is applied, the set interval t begins. After the interval t has expired the output
relay R switches into on-position. This status remains until the supply voltage is interrupted. If the supply
voltage is interrupted before the expiry of the set interval, the interval t already expired is erased and is
restarted when the supply voltage is next applied.

A OFF DELAY WITHOUT AUXILIARY VOLTAGE

R OFF DELAY

LED U/t

S STAR-DELTA START-UP

When the supply voltage U is applied, the star-contact switches into on-position and the set star-time t 1 begins. After the interval t1 has expired the star-contact switches into off-position and the set transit-time t2 begins. After the interval t2 has expired the delta-contact switches into on-position. To restart the function the supply voltage must be interrupted and reapplied.

ER ON DELAY AND OFF DELAY WITH CONTROL CONTACT

The supply voltage U must be constantly applied to the device. When the control contact S is closed, the set interval t 1 begins. After the interval t 1 has expired, the output relay R switches into on-position. If the control contact is opened, the set interval t2 begins. After the interval t2 has expired, the output relay Switches into off-position. If the control contact is opened before the interval t1 has expired, the interval already expired is erased and is restarted with the next cycle.

When the supply voltage U is applied, the release for the interval starts. When the control contact S is closed, the set interval t begins. If the control contact S is opened during the set interval t, the interval stops, and the already expired interval is stored. During the lapse of time the control contact can be opened or closed as often as required. If the sum of the periods, in which the control contact S is closed reaches the set interval t the output relay R switches into on-position. The interval is stopped and a further activation of the control contact S remains without effect. By interrupting the supply voltage, the device will be reset. A possibly expired time t is deleted.

Es ON DELAY WITH CONTROL INPUT

The supply voltage U must be constantly applied to the device. When the control contact S is closed, the set interval t begins. After the interval t has expired the output relay R switches into on-position. This status remains until the control contact is opened again. If the control contact is opened before the interval t has expired, the interval already expired is erased and is restarted with the next cycle.

ET ON DELAY TWO WIRE CONNECTED

When the supply voltage U is applied, the set interval t begins. After the interval has expired the thyristor switches on. This status remains until the supply voltage is interrupted. If the supply voltage is interrupted before the expiry of the interval, the interval already expired is erased and is restarted when the supply voltage is next applied.

Wu SINGLE SHOT LEADING EDGE VOLTAGE CONTROLLED

When the supply voltage U is applied, the output relay R switches into on-position and the set interval t begins. After the interval thas expired the output relay switches into off-position. This status remains until the supply voltage is interrupted. If the supply voltage is interrupted before the interval t has expired, the output relay switches into off-position. The interval already is erased and is restarted when the supply voltage is next applied.

EWu ON DELAY SINGLE SHOT LEADING EDGE WITH CONTROL CONTACT

When the supply voltage U is applied, the set interval $t 1$ begins. After the interval t1 has expired, the output relay R switches into on-position and the set interval t 2 begins. After the interval t2 has expired, the output relay switches into off-position. If the supply voltage is interrupted before the interval $\mathrm{t} 1+\mathrm{t} 2$ has expired, the interval already expired is erased and is restarted when the supply voltage is next applied.

nWu MAINTAINED SINGLE SHOT LEADING EDGE

When the supply voltage U is applied, the output relay R switches into on-position and the set interval t begins. After the interval thas expired the output relay switches into off-position. This status remains until the supply voltage is interrupted. If the supply voltage is reconnected before the interval t has expired, the unit continues to perform the actual single shot.

Ws SINGLE SHOT LEADING EDGE WITH CONTROL INPUT

The supply voltage U must be constantly applied to the device. When the control contact S is closed, the output relay R switches into on-position and the set interval t begins. After the interval thas expired the output relay switches into off-position. During the interval, the control contact can be operated any number of times. A further cycle can only be started when the cycle run has been completed.

The new, compact, monitoring modules with ModBus RTU interface, for highly accurate and reliable measurement generate many measured values for a PLC or other master devices.

TELE introduces a new range of communication-capable monitoring devices with ModBus RTU interface with the focus on electric energy applications and monitoring of key electrical values in industrial plants. The modules reliably measure current / voltage / power / energy and various other electrical values in single or three phase networks and supply the data via ModBus RTU to a PLC or other data logger. The fast measurement cycle and fast responding data transmission gives the operator a clear overview of the condition of his system. These accurate process data enable process specialists to adapt maintenance intervals accordingly and help to avoid costly unscheduled downtimes.

3-PHASE POWER METER WITH MODBUS RTU

The 3-phase power meter with ModBus RTU is a complete three phase power meter housed in a 17.5 mm wide module and supports the connection of
most common current transformers (1 or 5A, 333 mV , Rogowski probes). It measures the power (active / reactive / apparent power, bidirectional energy, RMS values, frequency, power factor) in three-phase supply networks. The device is available in three different versions for various applications from standard measurement to power quality requirements.

1-PHASE POWER METER AC/DC WITH MODBUS RTU

 The 1-phase power meter AC/DC with ModBus RTU measures DC current up to 50A/300A and DC voltage up to 1000 V . With the same device you can measure both current and voltage for different applications in the fields of renewable energy, building automation or mobility. Thanks to the build-in interface converter RS485 Modbus RTU, data is available directly at the datalogger without any other hardware or software.

1-phase universal current/voltage converter with ModBus RTU

Installation design

Universal sensor input, analog output and RS485 ModBus RTU, RMS, AC and DC measurement, min/max and average measurement, frequency and crest factor measurement, temperature and resistance measurement (PT100 or NTC) and internal temperature measurement.

1-phase AC/DC current transformer with ModBus RTU \& analog interface

Converter design

TRMS measurement up to 50 A or up to 300 A , frequency range DC or $20 . . .2000 \mathrm{~Hz}$, bipolar, analog 0-10V and serial output ModBus RTU/ RS485, adjustable range by dip switch or RS485, DIN rail mounting horizontal or vertical.

Serial converter USB-RS485 (isolated up to 5 kV)

USB
The S-USB485 is a serial converter isolated up to 5 kV , with software functions based on a USB FTDI chip. Windows validated drivers download automatically when your PC is online. This device connects safely to any ModBus device on RS485.

MEASUREMENT VALUES

Irms	-	-	-
Idc			
lac			
Ah on Irms			
Ah on Idc			
Ah on lac			
Vrms	-	-	-
Vdc			
Power/ reactive power/ apparent power	-	-	
$\operatorname{Cos} \varphi$	-	-	
Distorted power factor		-	
$\operatorname{Tan} \varphi$		\bullet	
Active energy bidirectional	-	-	
Reactive/ Apparent energy bidirectional	-	-	
Ipeak / Vpeak	-	-	
Frequency	-	-	
Crest factor	-	-	-
Temperature (PT100 / NTC)			
Resistance (of PT100 / NTC)			
Internal temperature		-	
Min, Max values		-	-
Average values		-	
THD		-	
TDD		-	
Phase sequence monitoring		-	-
Time above threshold for power		-	
Inverter input (PWM modulated)			
Harmonic analysis up to 63rd			
Interharmonics			
Sag			
Swell			
Interruption			
Waveform display			
1-ph device efficiency measurement			

1-ph device efficiency measurement

300A	300 A	external CT	external CT	50A	300 A
400 A	400A	external Hall sensor	external Hall sensor	50A	300 A
800 V	80 V	(external VT)	(external VT)	-	-
1000V	100V	(external VT)	(external VT)	-	-
-	-	- (alt. voltage)	- (alt. voltage)	-	-
-	-	- (alt. voltage)	- (alt. voltage)		
		- (alt. voltage)	- (alt. voltage)		
		- (alt. voltage)	- (alt. voltage)	- (2800010)	- (2800030)
		- (alt. voltage)	- (alt. voltage)		
		- (alt. voltage)	- (alt. voltage)		

 system protection
(4) Autonomously working disconnecting

WHY?
In the event of a network shutdown or network disruption, small power plants must be disconnected from the grid immediately to avoid any danger to people andmachinery.

FUNCTION

An automatic disconnection device monitors the feedin of energy to the $230 / 400 \mathrm{~V}$ grid. In case of a power failure or disruption by the energy supplier it is vital for small power plants to be disconnected within a few milliseconds. Voltage- and frequency monitoring as well as island operation detection are the main requirements for an automatic disconnection device.

REQUIREMENT

Converting renewable energy into electricity is a key element in stabilizing the global climate. In the context of small and micro power plants we mainly see
photovoltaic installations, small wind power generators, cogeneration plants or small hydropower plants being used. The energy obtained is used to cover own consumption or increasingly fed into the public lowvoltage grid at a profit. To ensure network safety, an automatic interface monitors the transfer between small power plants and the grid of the energy supplier (ES). Large power plants are managed and monitored directly by the ES using telecontrol technology. Yet, this method is too expensive and therefore uneconomical for many small electricity producers.

In the event of a power cut or a disruption in the grid of the energy supplier, small power plants have to be disconnected immediately from the public grid to prevent unwanted feed-in, and to protect maintenance personnel and consumers from risk of improper voltages and frequencies. Monitoring and automatic disconnection are carried out by an automated
interface. Small power plants must be equipped with an automatic isolation unit that is checked and permitted by an accredited authority. Country-specific norms define in-depth how the interface must be constructed and certified. To meet requirements of the energy supply companies' standards the market offers solutions as individual components, multinational components as well as integrated solutions. If required
by the network operator, the thresholds can be adjusted even outside of standard values. Functionally safe devices also fulfil the monitoring function in the event of faults, detect these faults and ensure safe operating conditions.

TELE's NA003-M64 offers an optimal solution for each country and any requirement.

Multifunctional device

Open setup, fully configurable without any limitations

Biomass power plant

Combined heat and power plant

One device for low and medium voltage grid

FUNCTIONALITY

Implemented standards

Measuring variable

Measuring range

Monitoring functions

Features

Supply voltage

Rated frequency
Tolerance of rated frequency
Output circuit
Digital inputs

Complies with new and previous standards which makes replacement of existing installations fast and easy.

Predefined parameter settings for several countries.
Check all available standards and settings by scanning the QR Code:

phase to phase voltage, phase to neutral voltage, 10 minutes voltage average, frequency, frequency change (RoCoF), phase shift (PShift)
phase to phase voltage: $0 \ldots 560 \mathrm{VAC}$, phase to neutral voltage: $0 \ldots 325 \mathrm{VAC}$ frequency: $40 \ldots 60 \mathrm{~Hz}$, RoCoF $100 \mathrm{mHz} / \mathrm{s} . .2 .000 \mathrm{mHz} / \mathrm{s}$, Pshift 1 ... 15°
$2 \times$ phase to neutral overvoltage
$2 \times$ phase to neutral undervoltage;
$2 \times$ phase to phase overvoltage
$2 \times$ phase to phase undervoltage;
each turn-off threshold is associated with its own turn off time
fixed turn-on time, random turn-on time configurable feedback contact evaluation enable / disable functions via digital inputs enable / disable functions via selectable mode
1×10 minutes voltage average (over) $4 \times$ overfrequency, $4 \times$ underfrequency, $1 \times$ random overfrequency
$1 \times$ RoCoF (over), $1 \times$ PShift (over)
4 different connection and measuring modes: 2 wire (single phase L1, N); 3 wire (3 phase without N); 4 wire (3 phase LL only); 4 wire (3 phase LL + LN) configurable nominal voltage functional safety password protection and sealing capability error memory with time stamp (entries)

24 V DC $\pm 10 \%$,
 110 ... 240 V AC $\pm 30 \%$,
 $50 / 60 \mathrm{~Hz}$ or DC
 $48 . .63 \mathrm{~Hz}$
 3 CO contacts 5A, 250V AC (1250VA)

DESIGN

Accessories

For our timing- and monitoring relays, power monitors and grid- and system protection we offer the following accessories.

TR2, TR3, SNT Series power modules for transforming the supply voltage to the internal operating voltage of GAMMA relays

	MODEL	SUPPLY VOLTAGE	TOLERANCE	POWER INPUT $\mathrm{P}_{\text {IN }}$	POWER OUTPUT $P_{\text {out }}$	DESIGN	PART NO
($\begin{gathered}\text { TR2 } \\ \text { TR3 }\end{gathered}$	SNT2-24V DC	24V DC	20.4-26.4V	2VA	0.5VA	A	282050
\cdots SNT2	TR2-24V AC	24 V AC	20.2-26.4V	2VA	0.5 VA	A	282110
$\xrightarrow{32 \mathrm{~mm}}$	TR3-24V AC	24 V AC	20.4-26.4V	4VA	1.5 VA	B	285010
Design A (TR2, SNT2) for Gamma G2	TR2-42V AC	42 V AC	36-46V	2VA	0.5VA	A	282111
	TR2-48V AC	48 V AC	41-53V	2VA	0.5 VA	A	282112
	TR2-110V AC	110 V AC	94-121V	2VA	0.5 VA	A	282113
	TR3-110V AC	110 V AC	94-121V	4VA	1.5 VA	B	285013
	TR2-127V AC	127 V AC	108-140V	2VA	0.5 VA	A	282114
	TR2-230V AC	230 VAC	195-264V	2VA	0.5 VA	A	282120
Design B (TR3) for Gamma G4	TR3-230V AC	230 V AC	184-264V	4VA	1.5 VA	B	285025
	TR2-400V AC	400 V AC	$340-456 \mathrm{~V}$	2VA	0.5 VA	A	282117
	TR3-400V AC	400 V AC	$323-456 \mathrm{~V}$	4VA	1.5 VA	B	285017
	TR2-440V AC	400 V AC	374-484V	2VA	0.5 VA	A	282119
	TR3-440V AC	440 V AC	374-484V	4VA	1.5 VA	B	285019
	TR3-500V AC	500 V AC*	425-550V	4VA	1.5 VA	B	285026
	* May only be u	th types G4PM	d G4BM!				

Remote Potentiometer RONDO Series frontpanel mounting adjusting values of intended timers and thyristor control units remotely.

	MODEL	SCALE	DIMENSIONS ($\mathbf{W} \times \mathrm{H} \times \mathrm{D}$)	CONNECTIONS	PART NO
	R2 $1 \mathrm{M} \Omega 0.1$	0,1-1	$\varnothing 28$ (Ø 22*)×53 mm	$\begin{gathered} 1=\text { First } \\ 2=\text { Wiper } \\ 3=\text { Finish } \end{gathered}$	282130
	R20 10K Ω	0-10			282131
R2					

* diameter front panel mounting

Probes - SK Series for monitoring level of conductive liquids

(0)	(9)	(99)	MODEL	TYPE	MEASURING VOLTAGE	MAX. TEMP.	NUMBER OF ELECTRODES	LENGTH	DESIGN	PART NO
0	\bigcirc	\bigcirc	SK1	immersion probe		$60^{\circ} \mathrm{C}$	1	140 mm	A	190107
			SK2			$90^{\circ} \mathrm{C}$	2	500 mm	B	190108
			SK3-500	rod probe		$90^{\circ} \mathrm{C}$	3	500 mm	C	190109
A	в	c	SK3-1000			$90^{\circ} \mathrm{C}$	3	1000 mm	C	190110

Front Cover FA-G2 for GAMMA monitoring relays (width 22.5 mm)

Complementary products

In addition to our product range we offer the following complementary products:

Current transformers

- Baffle-type current transformer series: WSW
- Bar-type current transformer series: DSW
[page 49]
[page 49]

Coupling units

> - Coupling relay series: ENYA
> - Automatic-manual-OFF relay series: OCTO
> - Analog data encoder series: OCTO
> - Levelswitch series: OCTO
[page 50]
[page 50]
[page 50]
[page 50]

Switching relays

Sets	- Interface relay series: STKR and SKR	[page 51]
Accessoires	- Miniature relay series: RA and RM	[page 51]
	- PCB relay series: RP	[page 51]
	- Industrial relay series: RT	[page 52]
	- Multifunction time module series: COMBI	[page 52]

Softstarter

$\left.\begin{array}{lll}\text { Braking units } & \text { - } & \text { Motor starter series: P4.0 }\end{array}\right]$ [page 54]

Hour meters

Digital time switches	■ Hour meter series: TBG and TBW	[page 57]
Countdown timer	■	Digital time switch series: TSC

DC power supplies

- Switching power supplies
[page 58]

MODEL	RATED POWER	RATED PRIMARY CURRENT	SECONDARY CURRENT	DIMENSIONS	CLASS	PART NO
WSW 601 A/5A 2,5VA	2,5VA	1A		$80 \times 60 \times 30 \mathrm{~mm}$		498060
WSW 605 A/5A 2,5VA	2,5VA	5A		$80 \times 60 \times 30 \mathrm{~mm}$		498062
WSW 60 10A/5A 2,5VA	2,5VA	10A		$80 \times 60 \times 30 \mathrm{~mm}$		498063
WSW $6015 \mathrm{~A} / 5 \mathrm{~A} 2,5 \mathrm{VA}$	2,5VA	15A		$80 \times 60 \times 30 \mathrm{~mm}$		498064
WSW 60 20A/5A 2,5VA	2,5VA	20A		$80 \times 60 \times 30 \mathrm{~mm}$		498065
WSW $6025 \mathrm{~A} / 5 \mathrm{~A} 2,5 \mathrm{VA}$	2,5VA	25A		$80 \times 60 \times 30 \mathrm{~mm}$		498066
WSW $6030 \mathrm{~A} / 5 \mathrm{~A} 2,5 \mathrm{VA}$	2,5VA	30A		$80 \times 60 \times 30 \mathrm{~mm}$		498067
WSW 60 40A/5A 2,5VA	2,5VA	40A	5A	$80 \times 60 \times 30 \mathrm{~mm}$		498068
DSW $6050 \mathrm{~A} / 5 \mathrm{~A} 1,25 \mathrm{VA}$	1,25VA	50 A		$50,5 \times 50,5 \times 85 \mathrm{~mm}$		498069
DSW $6075 \mathrm{~A} / 5 \mathrm{~A} 2,5 \mathrm{VA}$	2,5VA	75A		$50,5 \times 50,5 \times 85 \mathrm{~mm}$	3	498071
DSW 60 100A/5A 2,5VA	2,5VA	100A		$33 \times 33 \times 50 \mathrm{~mm}$		498073
DSW 60 150A/5A 3,75VA	$3,75 \mathrm{VA}$	150A		$33 \times 33 \times 50 \mathrm{~mm}$		498075
DSW 60 200A/5A 5VA	5VA	200A		$33 \times 33 \times 50 \mathrm{~mm}$	1	498076
DSW 60 250A/5A 5VA	5VA	250A		$33 \times 33 \times 50 \mathrm{~mm}$		498077
DSW $60300 \mathrm{~A} / 5 \mathrm{~A}$ 5VA	5VA	300 A		$33 \times 33 \times 50 \mathrm{~mm}$		498078
ACCESSORIES	DESCRIPTION					PART NO
MC-SW (2 pcs)	Mounting clip required for mounting the current transformer on DIN-Rail TS 35					498100

SUPPLY CIRCUIT

Supply voltage
Rated frequency

24-240V AC/DC	$\begin{aligned} & 24-240 \mathrm{~V} \text { AC/DC (E1 K) } \\ & 12-240 \mathrm{~V} \text { AC/DC (ЕЗ) } \end{aligned}$	24V AC/DC	24V AC/DC	24V AC/DC	24V AC/DC	24 V AC/DC
			$48-63 \mathrm{~Hz}$			

INPUT CIRCUIT

Control voltage
Analog input DC
Trigger level DC
24V AC/DC

$0-10 \mathrm{~V}$	$0-20 \mathrm{~mA}$	$0-10 \mathrm{~V}$	$0-20 \mathrm{~mA}$
$0-10 \mathrm{~V}$	$0-20 \mathrm{~mA}$	$1-10 \mathrm{~V}$	$2-20 \mathrm{~mA}$

CHECKBACK
Number of
checkback contacts
Min. switching capacity
Max. switching capacity

| 1 NO contact |
| :---: | :---: | :---: | :---: | :---: |
| $5 \mathrm{mVA}(1 \mathrm{~mA} / 5 \mathrm{~V})$ |
| $24 \mathrm{VA}(500 \mathrm{~mA} / 48 \mathrm{~V})$ | $56 \mathrm{VA}(2 \mathrm{~A} / 28 \mathrm{~V})$ |

OUTPUT CIRCUIT
Number of
switching contacts
Max. switching capacity AC

Analog output

1 NO contact	1 CO contacts (E1K) 2 CO contacts (E3K)	1 CO contact	-	-	1 CO contact	1 CO contact
$\begin{gathered} \text { 4000VA } \\ (16 \mathrm{~A} / 250 \mathrm{~V}) \end{gathered}$	$\begin{gathered} 2000 \mathrm{VA} \\ (8 \mathrm{~A} / 250 \mathrm{~V}) \end{gathered}$	$\begin{gathered} 2000 \mathrm{VA} \\ (8 \mathrm{~A} / 250 \mathrm{~V}) \end{gathered}$	-	-	$\begin{gathered} 2000 \mathrm{VA} \\ (8 \mathrm{~A} / 250 \mathrm{~V}) \end{gathered}$	$\begin{gathered} 2000 \mathrm{VA} \\ (8 \mathrm{~A} / 250 \mathrm{~V}) \end{gathered}$
-	-	-	0-10V DC	0-20mA	-	-
$17.5 \times 87 \times 65 \mathrm{~mm}$	$\begin{gathered} 17,5 \times 87 \times 65 \mathrm{~mm}(\mathrm{E} 1 \mathrm{~K}) \\ 35 \times 87 \times 65 \mathrm{~mm}(\mathrm{E} 3 \mathrm{~K}) \end{gathered}$	$17.5 \times 87 \times 70 \mathrm{~mm}$				

SKR, STKR Series and Accessories PLC coupling relays

	MODEL	FUNCTION		$\begin{aligned} & \text { ED } \\ & \text { AGE } \end{aligned}$	$\begin{gathered} \text { RELAY } \\ \text { vOLTAGE } \end{gathered}$	NUMBER OF SWITCHING CONTACTS	PACKAGING UNIT	PART NO
	SKR 524	PLC coupling relay unit	24 V	AC/DC		1 CO contact	10	180501
-	SKR 024		24 V	DC				180500
	SKR 730		230 V	AC				180502
	STKR 524	PLC coupling relay modular	24 V	AC/DC	24 V DC			180504
	STKR 024		24 V	DC	24V DC			180503
	STKR 615		115 V	AC/DC	60 V DC			180506
	STKR 730		230 V	AC	60 V DC			180505
	RM699V-3011-85-1024	relay for STKR	24 V	DC			20	100660
	RM699V-3011-85-1060		60 V	DC			20	100661
STKR								
	ACCESSORIES	FUNCTION			COLOR	NUMBER OF POLES		
	PB-B SKR	jumper link			blue	20	10	180535
	PB-R SKR				red			180536

RA, RM Series miniature relays / RP Series PCB relays

	MODEL	RATED	AGE	LED	NUMBER OF SWITCHING CONTACTS	PACKAGING UNIT	PART NO
	RA 524L-N	24 V		-			100623LD-N
	RA 615L-N	115 V	AC	-			100621LD-N
	RA $730 \mathrm{~L}-\mathrm{N}$	230 V		-	2 CO contacts		100624LD-N
	RA 012L-N	12 V		-			100625LD-N
RA	RA 024L-N	24 V		-			100622LD-N
	RM 512L-N	12 V		-			100612LD-N
	RM 524L-N	24 V		-		10	100613LD-N
	RM 615L-N	115 V		-			100618LD-N
	RM 730L-N	230 V		-			100619LD-N
	RM 012L-N	12 V		-			100601LD-N
RM	RM 024L-N	24 V		-			100603LD-N
	RM 048L-N	48 V		-			100602LD-N
Enla	RM 220L-N	220 V		-			100620LD-N
RP024-2	RP 524-1	24 V					100431
	RP 730-1	230 V			1 CO contacts		100432
	RP 024-1	24 V	DC				100430
	RP 524-2	24 V				20	100417
	RP 730-2	230 V			2 CO contacts		100418
	RP 012-2	12 V					100420
	RP 024-2	24 V					100416

RT Series industrial relays

COMBI Series multifunction timing module for industrial relays with socket type ES9 and PF113BEM (ES12)

MODEL	FUNCTIONS	TIME RANGES	SUPPLY VOLTAGE	NUMBER OF SWITCHING CONTACTS	DIMENSIONS $(W \times H \times D)$	CERTIFICATES	PACKAGING UNIT	$\begin{aligned} & \text { PART } \\ & \text { NO } \end{aligned}$
COM3T	8 E, R, Ws, Wa, Wu, Es, Bp, Bi	$\begin{gathered} 8 \\ (0.05 s-10 d) \end{gathered}$	$\begin{gathered} 24-240 \mathrm{~V} \\ \text { AC/DC } \end{gathered}$	2 or 3 CO contacts (according to selected industrial relay)	$35 \times 12 \times 47 \mathrm{~mm}$	CE, cULus	20	237010

Sockets for switching relays

MODEL	MODULES USABLE	TYPE OF CONNECTION	FOR RELAYS	RATED VOLTAGE		PACKAGING UNIT	PART NO
PYF14BE (ES 15/4N)	yes (pls. s. table below)	screw terminal	RA, RM	300 V	AC	10	180134
PYF14BE3 (ES 15/4S)							180145
PYF14BE3CC (ES 15/4G)		push-in terminal					180148
CST-B14F2-L (ES 15/4B)							180146
RSS214		screw terminal	RM				180050
PI50BE/3R (ES 50/3)							180150
PI50BE/3CC (ES 50/3G)		push-in terminal				20	180149
PI50BE (ES 50)		screw terminal					180137
PSS8/3						10	180056
PF083BE (ES8)	no		RT 8-pin				180139
ES 9	yes						180041
PF113BEM (ES12)	(pls. s. table below)		RT 11-pin				180136
PF113BE (R11X)	no					1 or 10*	180155

* For KAPPA series also available as single packaging unit.

Modules and Accessories for switching relays

MODEL	TYPE DESCRIPTION	FOR SOCKETS SERIES	FOR SWITCHING RELAYS SERIES	RATED VOLTAGE	PACKAGING UNIT	PART NO
M21N	diode	PYF, CST, PI	RA, RM, RP	$6-230 \mathrm{~V}$ DC (+A1)	20	180261
M41R	LED (red) + diode	PYF, CST, PI	RA, RM, RP	$6-24 \mathrm{~V}$ DC (+A1)		180263
EM 12	LED (green) + diode	RSS214, PSS8	RA, RM, RP	$6-24 \mathrm{~V} D C(+\mathrm{A} 1)$	10	180309
EM 03	RC-link	RSS214, PSS8	RA, RM, RP	110-230V AC		180300
TYPE41 (TVL1)	LED + diode	PF113BEM, ES9	RT	$6-24 \mathrm{~V} D C(+\mathrm{A} 1)$	20	180232
TYPE21 (TVD1)	retaining clip (metal)	PF113BEM, ES9	RT	$6-230 \mathrm{~V}$ DC (+A1)		180230
HB/RM-RA	retaining clip (plastic)	PYF, CST, RSS214	RA, RM		25	180032
HB/ES15	retaining clip (metal)	PYF, CST	RA, RM		10	180153
HB/RT	retaining clip(plastic)	PF, ES9	RT			180043
HB/RP 16	retaining clip (plastic)	PI50	RP		20	180029
HB/PSS	retaining clip (plastic)	PSS8/3	RP		10	180060
BS/PSS	front cover (label field)	PSS8/3	RP			180057

$22,5 \mathrm{~mm}$ compact motor starter including motor protection

FUNCTIONALITY

Today's drive solutions require powerful and flexible equipment solutions. The compact motor starter P-4.0 from TELE can be used for motors up to 4.0 kW @ 400V and includes 5 functions in one compact unit, measuring only $22,5 \mathrm{~mm}$ in width. This intelligent instrument offers soft start, soft stop, forward/ reverse, current protection and electronic motor protection.

Thanks to the integrated motor protection plus isolation relays, separate MCB devices are not required. A simple circuit breaker protects the
installation against short circuit and faulty wiring. The soft start and stop function is performed by semiconductors (thyristors) and the reversing function by internal relays, operated in the standstill phase. After performing the start/stop function the semiconductors are bypassed by integrated relays to minimize power dissipation. The intelligent combination of semiconductors and relays increases lifetime and efficiency of the product. The integrated current limit protects motors, shafts and plants from mechanical stress and reduces maintenance and downtimes.

Technical features

- Forward/Reverse of 3-ph ac motors 3 AC 480 V / 9 A, equals 4.0 kW @ 400VAC
- Integrated reversing unit
- 2-ph control for softstart and stop
- Integrated bypass relays
- 3 pots for adjustment of torque, time and max. current
- 4 LEDs indicate status and error
- Reset button on front and external reset available
- Dimension in mm (W×H×D): 22,5×105×120,3
- Article number:

490800 (F/R + blocking protection)
490801 (F/R + motor protection + isolation contactor)

Your advantages

- Up to 5 functions in one device
- Forward/Reverse, soft start, current limit, motor protection, soft stop
- Compact design, only 22.5 mm in width
- Simple commissioning and easy operation
- Robust semiconductors with 1500 V max. isolation voltage
- Increased system availability by motor protection function
- Increased lifetime by hybrid design compared to relay solution
- Energy saving by bumpless soft start/stop function and bypass relay

Applications

- Reversing drive for door, lifting and transport application with blocking protection
- Transport systems (belts and rollers) with blocking protection
- Motorized valves in process applications (chemical and petrochemical, power generation plants)
- Pumps and fans
- Switching of 3 ph transformers
- ... and a lot of other applications with
sophisticated drive requirements

Advantage of power control with semiconductors

- Switching without any wear
- Extended lifetime
- Frequent start / stop event
- Low space requirement
- Fast switching
- Suitable for industrial environment

Functions

- Reversing direction (forward / return)
- Softstart / Softstop
- Overcurrent protection
- Motorprotection (option)
- Isolation relays (option)

MODEL	FUNCTIONALITY	MOTOR CONTROL	NOMINAL CURRENT	NOMINAL MOTOR POWER	DIMENSIONS $(W \times H \times D)$	CERTIFICATES	PART NO
P-4.0/RL/OL	forward/reverse, soft start, current limit, blocking protection, soft stop	2-phase	9 A	4 kW	$22.5 \times 105 \times 120.3 \mathrm{~mm}$	CE, cULus (listing pending)	490800
P-4.0/RL//TP/IC	forward/reverse, soft start, soft stop, motor protection + isolation contactor	2-phase	9 A	4kW	$22.5 \times 105 \times 120.3 \mathrm{~mm}$	CE, cULus (listing pending)	490801

GTF Series digital thyristor control unit (compact design, digital configurable)

GTF

MODEL	AUXILIARY VOLTAGE	NOMINAL VOLTAGE	NOMINAL CURRENT	FAN	INTERNAL FUSE	OPERATING MODE	DIMENSIONS $(W \times H \times D)$	PART NO
GTF-25-480-0-0-0-0 1-P-M	24V AC/DC	480 V AC *	25A			phase clipping control (other operating modes configurable)	$60 \times 136,5 \times 143 \mathrm{~mm}$	493100
GTF-40-480-0-0-0-0 1-P-M			40 A				$60 \times 136,5 \times 143 \mathrm{~mm}$	493105
GTF-50-480-0-0-0-0 1-P-M			50 A				$80 \times 136,5 \times 143 \mathrm{~mm}$	493108
GTF-60-480-0-0-0-0 1-P-M			60A				$80 \times 136,5 \times 143 \mathrm{~mm}$	493111
GTF-75-480-0-0-0-0 1-P-M			75A				$127 \times 136,5 \times 143 \mathrm{~mm}$	493121
GTF-90-480-0-0-0-0 1-P-M			90 A				$127 \times 136,5 \times 143 \mathrm{~mm}$	493131
GTF-120-480-0-0-0-0 1-P-M			120A	\bullet			$127 \times 150,5 \times 143 \mathrm{~mm}$	493141
GTF-150-480-0-0-1-0 1-P-M			150A	-	-		$108,3 \times 302 \times 170,4 \mathrm{~mm}$	493152
GTF-200-480-0-0-1-0 1-P-M			200A	\bullet	-			493161
GTF-250-480-0-0-1-0 1-P-M			250 A	-	-			493171
Configuration cable + software								493090

* other nominal voltages upon request

GTS Series thyristor switch (compact design, operating mode zero point switch)

GTS

MODEL	NOMINAL VOLTAGE	NOMINAL CURRENT	CONTROL INPUT	FAN	DIMENSIONS $(W \times H \times D)$	PART NO
GTS-15/48-D-0	480 V AC *	15A	6-32V DC		$24 \times 100 \times 107 \mathrm{~mm}$	493010
GTS-25/48-D-0		25A			$24 \times 100 \times 107 \mathrm{~mm}$	493005
GTS-40/48-D-0		40A			$35 \times 100 \times 142 \mathrm{~mm}$	493003
GTS-50/48-D-0		50 A			$60 \times 100 \times 142 \mathrm{~mm}$	493001
GTS-60/48-D-0		60A			$80 \times 100 \times 142 \mathrm{~mm}$	493020
GTS-75/48-D-0		75A			$127 \times 100 \times 142 \mathrm{~mm}$	493021
GTS-90/48-D-0		90A			$127 \times 100 \times 142 \mathrm{~mm}$	493022
GTS-120/48-D-0 VEN92		120A		-	$127 \times 100 \times 142 \mathrm{~mm}$	493023

* other nominal voltages upon request

Semiconductor Fuse (capsule fuse)

HL-fuse

MODEL	NOMINAL CURRENT	NOMINAL CURRENT THYRISTOR CONTROL	FUSE SIZE	PART NO
HL-fuse 5A	10 A	5 A	$10 \times 38 \mathrm{~mm}$	490971
HL-fuse 15A	25 A	15 A	$10 \times 38 \mathrm{~mm}$	490975
HL-fuse 25A	30 A	25 A	$10 \times 38 \mathrm{~mm}$	490972
HL-fuse 35A	40 A	35 A	$41 \times 51 \mathrm{~mm}$	490973
HL-fuse 50A	63 A	50 A	$22 \times 58 \mathrm{~mm}$	490974
HL-fuse 50A GTF	50 A	50 A	$22 \times 58 \mathrm{~mm}$	490986

Fuse Holder (capsule fuse)

	MODEL	RATED CURRENT (IEC)	POLES	FUSE SIZE	PART NO
	Fuse holder 1-P 10x38	32A	1-Poles	$10 \times 38 \mathrm{~mm}$	490976
	Fuse holder 3-P 10x38	32A	3-Poles	$10 \times 38 \mathrm{~mm}$	490977
	Fuse holder 1-P 14×51	50A	1-Poles	$14 \times 51 \mathrm{~mm}$	490978
	Fuse holder 3-P 14x51	50A	3-Poles	$14 \times 51 \mathrm{~mm}$	490979
	Fuse holder 1-P 22×58	100A	1-Poles	$22 \times 58 \mathrm{~mm}$	490987
Fuse holder	Fuse holder 3-P 22x58	100A	3-Poles	$22 \times 58 \mathrm{~mm}$	490988

TSC Series Digital Time Switches daily-, weekly- or yearly program, DIN-rail mounting

TSC Series Digital Time Switches daily-, weekly- or yearly program, front panel mounting

	MODEL	SUPPLY VOLTAGE	CHANNELS	NUMBER OF SWITCHING CONTACTS		SWITCHING CAPACITY	RATED CONSUMPTION	DIMENSIONS	PART NO
				CO	NO				
	TSC44.11PRO	115 V AC	1	1		4000 VA	2.8 VA	$72 \times 94.5 \times 53 \mathrm{~mm}$	711576
TSC44.21PRO	TSC44.21PRO	230 V AC	2	1	1	4000 VA	1.5 VA	$72 \times 94.5 \times 53 \mathrm{~mm}$	711579

TTC Series Digital Time Switches countdown timer, front panel mounting

TBG Series analog hour meters, DC voltage

	MODEL	SUPPLY VOLTAGE	COUNTING CAPACITY	ACCURACY OF READING	DIMENSIONS	PART No
intiouth	TBG30.18	$12-48 \mathrm{~V}$ DC	999999 h	0.1 h	$53.2 \times 28.2 \times 63 \mathrm{~mm}$	711056
	TBG40.17				$48 \times 48 \times 38 \mathrm{~mm}$	711025
TBG/TBW30	TBG70.18		99999 h		$17.5 \times 85 \times 61.5 \mathrm{~mm}$	711435
	TBG70.29				$35 \times 90 \times 60 \mathrm{~mm}$	711408

TBW Series analog hour meters, AC voltage

TBG/TBW40

MODEL	SUPPLY VOLTAGE	RATED FREQUENCY	COUNTING CAPACITY	ACCURACY OF READING	DIMENSIONS	PART NO
TBW40.18	24 V AC	50 Hz	99999 h	0.01 h	$48 \times 48 \times 38 \mathrm{~mm}$	711045
TBW40.18	115 V AC				$48 \times 48 \times 38 \mathrm{~mm}$	711042
TBW70.18	115 V AC				$17.5 \times 85 \times 61.5 \mathrm{~mm}$	711434
TBW30.18	230 V AC				$53.2 \times 28.2 \times 63 \mathrm{~mm}$	711050
TBW40.18	230 V AC				$48 \times 45 \times 38 \mathrm{~mm}$	711040
TBW70.18	230 V AC				$17.5 \times 85 \times 61.5 \mathrm{~mm}$	711430
TBW70.29	24 V AC	$50 / 60 \mathrm{~Hz}$		0.1 h	$35 \times 90 \times 60 \mathrm{~mm}$	711355
TBW70.89	115 V AC				$35 \times 105 \times 60 \mathrm{~mm}$	711140
TBW70.89	230 V AC				$35 \times 105 \times 60 \mathrm{~mm}$	711141
TBW70.29	230 V AC				$17.5 \times 85 \times 61.5 \mathrm{~mm}$	711350

ACCESSORIES TBG, TBW DESCRIPTION PART NO

TBG/TBW70.18 TBG/TBW70.29

SB-TBX30	tension bracket for TBG/TBW30	711809
B55-TBX40	shutter for TBG/TBW40 $(55 \times 55 \mathrm{~mm})$	711800
ME72-TBX40	screen for TBG/TBW40 $(72 \times 72 \mathrm{~mm})$	711801
SB-TBX40	retaining clip for TBG/TBW40	711807
DR-TBW40	sealing ring for TBW40 (IP54)	711813
KA-TBX70.29	terminal cover for TBG/TBW70.29 (sealable)	711812

Industrial Housing for switch cabinet and plant construction

MODEL	OUTPUT VOLTAGE	OUTPUT POWER	OUTPUT CURRENT	PART NO
NDR-75-24	24 V DC	75W	3,2A	491630
NDR-120-24	24 V DC	120W	5,0A	491601
NDR-240-24	24 V DC	240W	10A	491610
NDR-480-24	24 V DC	480W	20A	491619

Installation Housing for building and plant engineering

MODEL	OUTPUT VOLTAGE	OUTPUT POWER	OUTPUT CURRENT	PART NO
HDR-30-12	12 V DC	24W	2A	491712
HDR-15-24	24 V DC	15,2 W	0,63A	491701
HDR-30-24	24 V DC	36 W	1,5A	491702
HDR-60-24	24 VDC	60W	2,5A	491703
HDR-100-24	24V DC	92W	3,83A	491704

ENYA series, in a 17.5 mm wide housing, multifunctional timer with a SPDT relay output and a supply voltage of 12-240V AC/DC.

Example product code monitoring relays

\mathbf{V}	$\mathbf{4}$	\mathbf{I}	\mathbf{M}	100 A	\mathbf{L}	$\mathbf{2 0}$	\mathbf{P}	$24-240$ VAC/DC
V4IM100 AL20P24-240 VAC/DC								

VEO series, in a 45.0 mm wide housing, multifunctional current monitoring with two contacts and a supply voltage of 24-240V AC/DC.

Global Headquarters

TELE Haase Steuergeraete Ges.m.b.H.
Vorarlberger Allee 38
Vienna, 1230
Austria

TELE Control Ltd.
Park House
200 Drake Street
Rochdale, OL16 1PJ
United Kingdom

US Office

TELE Controls Inc. 1101 Wilson Blvd 6th Floor
Arlington, VA 22209
United States

We're here to help. Please contact us directly or get in touch with your personal TELE reseller.

[^5]
[^0]: Advantages

 - 3in1 Duplex control of two loads
 - Integrated OFF and ON delay
 - Load alternator w/ selector switch to lock loads manually
 - Control voltage 24 - 240 V AC/DC
 - 8A@250VAC SPDT output

[^1]: Advantages

 - Improve system reliability
 - Increase pump efficiency
 - Optimize maintenance cycles
 - Prevent failure and reduction of downtimes
 - Optimized utilization in parallel operation

[^2]: Devices with Push-in terminal are not cULus listed.

[^3]: * For currents greater than 5A, matching current transformers are available as accessories and can be found on page 49

 For power modules TR2 and SNT2 pls. s. page 46.

[^4]: * For currents greater than 5A, matching current transformers are available as accessories and can be found on page 49

[^5]: www.tele-online.com/en
 export@tele-haase.at

